
Lab 4 c©2009 Felleisen, Proulx, et. al.

4 Abstracting over Data Definitions; Understanding
Constructors

4.1 Abstracting over Data Definitions.

Review of Designing Methods for Unions of Classes.

A file in a computer can contain either a text, or an image, or an audio
recording. Every file has a name and the owner of the file. There is addi-
tional information for each kind of file as shown in the program Files.java.

Download the file and work out the following problems:

1. Make one more example of data for each of the three classes and add
the tests for the method size that is already defined.

Now design the methods that will deal with the files:

2. Design the method downloadTime that determines how many sec-
onds does it take to download the file at the given download rate.

The rate is given in bytes per second.

3. Design the method sameOwner that determines whether the owner
of this file is the same as the owner of the given file.

Save the work you have done. Copy the file and continue.

Abstracting over Data Definitions: Lifting Fields

Save your work. Possibly start a new project and import the file into it. Al-
ternatively, save the a copy of the file you have been working on in another
folder.

Look at the code and identify all places where the code repeats — the
opportunity for abstraction.

Lift the common fields to an abstract class AFile. Make sure you in-
clude a constructor in the abstract class, and change the constructors in the
derived classes accordingly. Run the program and make sure all test cases
work as before.

Abstracting over Data Definitions: Lifting Methods

For each method that is defined in all three classes decide to which category
it belongs:

1



c©2009 Felleisen, Proulx, et. al. Lab 4

1. The method bodies in the different classes are all different, and so the
method has to be declared as abstract in the abstract class.

2. The method bodies are the same in all classes and it can be imple-
mented concretely in the abstract class.

3. The method bodies are the same for two of the classes, but are differ-
ent in one class — therefore we can define the common body in the
abstract class and override it in only one derived class.

Now, lift the methods that can be lifted and run all tests again.
Note: You can lift the method sameOwner only if you change its con-

tract. Do so — make sure you adjust the test cases accordingly.

4.2 Standard Java and the tester library

Goals

Starting with this lab we will use the standard Java language. Of course,
we only know a small part of the language. We will learn new features
when they are needed to support our program design process.

Moving to standard Java: File organization

Standard Java Project differs very little from the projects we have built so
far. The main difference is that standard Java expects you to define every
class and every interface in a separate file whose name is the name
of the class or interface, followed by .java. So, if our project contains
classes Book, the class Author, and the class ExamplesBooks, we will
need to define these classes in files Book.java, Author.java, and Examples-
Books.java. Typically, each Project contains all files that are used to solve
one problem.

Moving to standard Java: Visibility modifiers

The first new feature of the standard Java we need to introduce is the use
of visibility modifiers. In Java every class, interface, field, method declara-
tion, and method definition in Java typically starts with one of the words
public, private, or protected. The fields and methods declared to be
public can be accessed and are visible to all other classes — the way we
have been using the fields and methods in FunJava. Fields or methods de-
clared to be private can only be accessed within the class in which they

2



Lab 4 c©2009 Felleisen, Proulx, et. al.

are defined. So, for example, if we need a helper method that is not rele-
vant for anyone using our class, we would make this a private method.
We will have example of the use of the private visibility modifiers over
the next couple of weeks.

If the visibility modifier is omitted, as we have done, the methods and
fields can be used by any other classes within the same package. In our
projects, all classes are defined in the default package, and so we only need
to add the visibility modifiers when it serves a specific purpose:

• When a class implements an interface which includes method decla-
rations, every method definition in the class that implements a method
declared in the interface must be annotated with the public visibil-
ity modifier. This is because defining a private method in an inter-
face would be meaningless.

• If a class (possibly abstract) defines a method, the class that extends
it cannot reduce the visibility of this method. If the super class defines
the method as public, the subclass must also define it as public.

We will worry about the protected visibility modifiers later.

Moving to standard Java: Setting up a Project

• Create a new Project in Eclipse, name it Date.

• Right click on the src block under Date in the Pacakage Explorer pane.
Select New then File in the File menu name your file Date.java.

• Copy the following data definition into your Date.java file and save
the file:

// to represent a calendar date
class Date {

int year;
int month;
int day;

Date(int year, int month, int day){
this.year = year;
this.month = month;
this.day = day;

}
}

3



c©2009 Felleisen, Proulx, et. al. Lab 4

• Create a new file ExamplesDates.java while the default package block
(under the src block )is highlighted. This is where you will define the
examples and tests for the Date class.

• Define the default constructor for the class ExamplesDates:

ExamplesDates(){}

• Define in the ExamplesDates class three examples of valid dates.

• Import tester.jar as External Jar, as we have done before.

Moving to standard Java: Setting up the Run Configuration

• Highlight Date project in the Package Explorer pane.

• In the Run menu select Run Configurations....

• In the top left corner of the inner pane click on the leftmost item.
When you mouse over it should show New launch configuration.

• Select the name for this configuration - usually the same as the name
of your project.

• In the Main class: click on Search....

• Among Matching items select Main - tester and hit OK.

• Select the Arguments tab and type in the name of your Examples class
in double quotes. For this example it would be "ExamplesDates".
Notice, this is the name of the class, not the name of the file.

• At the bottom of the Run Configurations select Apply then Run.

• Next time you want to run the same project, make sure Date.java is
shown in the main pane, then hit the green circle with the white tri-
angle on the top left side of the main menu.

Moving to standard Java: Zipping up the Project

You can create an archive of your project by highlighting the project, then
choose Export then select Archive File. Eclipse will ask you for a folder
where to place the zip file and will let you choose the name for the zip file.

Your project will remain in the Eclipse workspace, but now you have
saved a copy that will not change as you keep working.

This is also the file that you will be submitting as your homework.

4



Lab 4 c©2009 Felleisen, Proulx, et. al.

4.3 Understanding Constructors: Data Integrity; Signaling Errors

Goals

In this part of this lab you will practice the use of constructors in assuring
data integrity and providing a better interface for the user.

Designing constructors to assure integrity of data.

The data definitions at times do not capture the meaning of data and the
restrictions on what values can be used to initialize different fields. For
example, if we have a class that represents a date in the calendar using
three integers for the day, month, and year, we know that our program is
interested only in some years (maybe between the years 1500 and 2500),
the month must be between 1 and 12, and the day must be between 1 and
31 (though there are additional restrictions on the day, depending on the
month and whether we are in a leap year).

Suppose we use the Date class to check for overdue books.

// to represent a calendar date
class Date {

int year;
int month;
int day;

Date(int year, int month, int day){
this.year = year;
this.month = month;
this.day = day;

}
}

and a simple set of examples:

class ExamplesDates {
ExamplesDates() {}

// good dates
Date d20060928 = new Date(2010, 2, 28); // February 28, 2010
Date d20071012 = new Date(2009, 10, 12); // Oct 12, 2009

// bad dates
Date b34453323 = new Date(3445, 33, 23);

}

Look at the third example of a date.
Of course, the third example is pure nonsense. Only the year is possibly

valid - still not really an expected value. To validate the date completely
(taking into account all the special cases for different months, as well as

5



c©2009 Felleisen, Proulx, et. al. Lab 4

leap years, and the change of the calendar at several times in the history)
is a project on its own. For the purposes of learning about the use of con-
structors, we will only make sure that the month is between 1 and 12, the
day is between 1 and 31, and the year is between 1500 and 2500.

Did you notice the repetition in the description of the valid parts of the
date? This suggests, we start with the following methods:

• method validNumber that consumes a number and the low and
high bound and returns true if the number is within the bounds (in-
clusive).

• methods validDay, validMonth, and validYear designed in a
similar manner.

Design at least one of these methods - you can finish the others at home.
For the purposes of being able to test at least the part of the program that is
completed, have the other methods produce true for the time being. (We
call such temporary method definitions stubs.)

Once you have done so, change the constructor for the class Date as
follows:

Date(int year, int month, int day){
if (this.validYear(year))

this.year = year;
else

throw new IllegalArgumentException("Invalid year in Date.");

if (this.validMonth(month))
this.month = month;

else
throw new IllegalArgumentException("Invalid month in Date.");

if (this.validDay(day))
this.day = day;

else
throw new IllegalArgumentException("Invalid day in Date.");

}

This example show you how you can signal errors in Java. The class
IllegalArgumentException is a subclass of the RuntimeException.
Including the clause

throw new ...Exception("message");

in the code causes the program to terminate and print the specified error
message.

6



Lab 4 c©2009 Felleisen, Proulx, et. al.

We want to make sure that this constructor will indeed accept only the
valid dates.

The tester library version 1.3.5 released on 5 February 2010 (please,
download the new version) allows us to test this constructor.

It provides two test cases:

t.checkConstructorException(String testName,
Exception e, String className,
Arg1Type arg1, Arg2Type arg2, ...);

t.checkConstructorException(
Exception e, String className,
Arg1Type arg1, Arg2Type arg2, ...);

The following test case verifies that the constructor throws the correct
exception with the expected message, if the supplied year is 3000:

t.checkConstructorException(
new IllegalArgumentException("Invalid year in Date."),
"Date", 3000, 12, 30);

Run the program with this test. Now change the test by providing an
incorrect message, incorrect exception (e.g. NoSuchElementException),
or by supplying data that do not cause the constructor to throw an excep-
tion. Observe the messages that come with the failed tests.

Java provides the class RuntimeException with a number of sub-
classes that can be used to signal different types of errors.

We will learn how to design a new subclass of the RuntimeException
class that is designed to deal with errors specific to our program at some
later date.

Overloading constructors to provide flexibility for the user: providing
defaults.

When entering dates in the current year it is tedious to always have to enter
2010. We can make avoid the need to type in the year by providing an
additional constructor that requires the user to give only the day and month
and assumes that the year is the current year (2010 in our case).

Remembering the single point of control rule, we make sure that the new
overloaded constructor defers all of the work to the primary full construc-
tor:

7



c©2009 Felleisen, Proulx, et. al. Lab 4

Date(int month, int day){
this(2010, month, day);

}

Add examples that use only the month and day to see that the construc-
tor works properly. Include tests with invalid month or year as well.

Overloading constructors to provide flexibility for the user: expanding
the options.

The user may want to enter the date in the form ”Oct 20 2010”. To make
this possible, we can add another constructor:

Date(String month, int day){ ...
}

Our first task is to convert the String that represents the month into a
number. We can do it in a helper method getMonthNo:

// convert a three letter month code into the numeric month value
// return 13 if the month code is not valid
int getMonthNo(String month){
if (month.equals("Jan")){ return 1;}
else {if (month.equals("Feb")){ return 2;}
else {if (month.equals("Mar")){ return 3;}
else {if (month.equals("Apr")){ return 4;}

...
else {return 13;}}}}}}}}}}}}
}

Our constructor can then invoke this method as follows:

Date(int year, String month, int day){
if (this.validYear(year))

this.year = year;
else

throw new IllegalArgumentException("Invalid year in Date.");

if (this.validMonth(this.getMonthNo(month)))
this.month = this.getMonthNo(month);

else
throw new IllegalArgumentException("Invalid month in Date.");

if (this.validDay(day))
this.day = day;

else
throw new IllegalArgumentException("Invalid day in Date.");

}

To check that it works, allow the user to enter only the first three months
(”Jan”, ”Feb”, and ”Mar”). The rest is tedious, and in a real program it
would be designed differently.

8


