
Exercise Set 8 c©2010 Felleisen, Proulx, et. al.

8 Direct Access Data Structures

Practice Problems

Practice problems help you get started, if some of the lab and lecture material is
not clear. You are not required to do these problems, but make sure you understand
how you would solve them. Solving them on paper is a great preparation for the
exams.

Finish Lab 8.

Working with the StringTokenizer

Set up a simple project, designing your solutions in the Algorithms class.
Add to your project the class Words.java from the assignment web site.

1. Look up the StringTokenizer class in JavaDocs. The methods
there allow you to traverse over a String and produce one word at
a time delimited by the selected characters. Read the examples. Then
write the method makeWords that consumes one String (that repre-
sents a sentence with several words, commas, and other delimiters and
produces an ArrayList<String> of words (Strings that contain
only letters — we ignore the possibility of words like ”don’t”). The
delimiters you should recognize are the comma, the semicolon, and
the question mark.

2. The text in theArrayList<String> words in the class Words is a
secret encoding. It represents verses from a poem - if you read only
the first words. Design the method firstWord that produces the
first word from a given String. Use it to decode the poem.

Pair Programming Assignment

8.1 Insertion Sort

We have seen the recursively defined insertion sort algorithm both in the
first semester and also recently, using the recursively defined lists in Java.

The main idea behind the insertion sort was that each new item has
been inserted into the already sorted list. We can modify this as follows:

1



c©2010 Felleisen, Proulx, et. al. Exercise Set8

1. Design the method sortedInsert that consumes a sorted ArrayList<T>
a Comparator<T> that has been used to define the sorted order for
the given list, and an item of the type T. It modifies the given ArrayList<T>
by adding the given item to the ArrayList<T>, preserving the or-
dering.

Note: Be careful to make sure it works correctly when the given ArrayList
is empty, and when the item is inserted at the end of the ArrayList.

2. Design the method insertionSort that consumes an arbitrary (un-
sorted) ArrayList<T> and a Comparator<T> and produces a new
sorted ArrayList<T> as follows:

It starts with an empty sorted list and inserts into it one by one all the
elements of the given ArrayList<T>.

Note: It is a bit more difficult to define the insertion sort algorithm so
that it mutates the existing ArrayList in place.

3. Extra Credit

Design an in-place insertionSort method. You will get the credit
only if the design is neat and clearly organized.

8.2 Mars Images: Image Processing

We ask you to work with with image data, and learn two simple techniques
for enhancement of images defined by pixel shades. Additionally, you will
learn how secret images can be encoded in an image, and explore the power
of colorization of images.

You will read images data files of NASA images of the planet Mars, dis-
play the images as received from the Viking Explorer, and by manipulating
this data generate enhanced images.

Read the following tutorial/explanation of the techniques you will use.
The detailed description of the classes and methods you should design
is at the end of the tutorial.

The Images

The data in the files mg20s002, mg20s007, etc. came from a NASA juke-
box of planetary images. Each file starts with several lines of text (a label)
that identifies the image - the location on Mars, the resolution (how large

2



Exercise Set 8 c©2010 Felleisen, Proulx, et. al.

an area is represented by one pixel), what spacecraft took the image, and
the information about the size of the image data (number of lines and the
number of pixels per line). After the label is histogram data - specifying
how many pixels there are of each shade (gray shade, just like the color
shades, has values in the range from 0 to 255). The last part of the file con-
tains the image data: each pixel is represented as one byte.

Your program that manipulates the images should use the given library
class MarsReader. You will use the following functionality of the class
MarsReader:

• The constructor for MarsReader looks for the original Mars image
file, reads the file labels and stores them in the field labels.

• The constructor then initializes the field BufferedInputStream bytestream
to deliver the bytes of the selected image.

To create new images and save then as .png files, use the given class
ImageBuilder. It works as follows:

• The constructor also initializes the field BufferedImage image that
is ready to receive the data needed to represent the resulting image.
You need to supply the height and the width of the image.

• The method setColorPixel (x, y, r, g, b) sets the color of
the given pixel in the image to the specified RGB shade.

• The method public void saveImage(String filename) saves
the image you have created in the .png format — it adds the .png to
the filename you specify.

Image Processing

Each pixel shade is represented as one byte. You can read one byte of data
from the bytestream using the method

int read()

The integer will be in the range from 0 to 255.
All images in this collection have the same size: 320 lines of 306 pixels in

each line. You can set the color of each individual pixel in the BufferedImage
image using the method

void setColorPixel(int x, int y, int r, int g, int b)

3



c©2010 Felleisen, Proulx, et. al. Exercise Set8

A ’black and white’ image is represented by pixels of different shade of
gray. By choosing setColorPixel (x, y, s, s, s) with values of s
ranging from 0 to 255 we can represent 256 different shades of gray.

In pictures of low quality the range of the shades is often much smaller
than 256. For example, in the images from Mars most of the shades are in
the range between about 70 and 170, leaving more than half of the shades
unused. Image enhancement methods take advantage of this deficiency.

Linear scaling.
The first method uses linear scaling to modify the shade of each pixel. It

starts with computing the minimum and maximum of the existing shades.
It then scales each shade so that the range of shades is expanded to 256
values. The scaling formula is:

newshade = (oldshade - min) * (255 / (max - min));

That means that in our example (the range between 70 and 170), oldshade=70
would be represented as newshade=0, similarly, oldshade=170 would
be represented as 255, and finally, oldshade=100 would be represented
as (100 - 70) * (255 / (170 - 70)) = 30 * 2.55 = 76.5 , or
newshade=76:

old shade new shade
70 0

170 255
100 76.5

We do not want to do this computation for every pixel over and over
again. Instead, we should save the computed values in a table indexed by
the oldshade values with the newshade values in the table.

Implement the linear scaling image processing and observe the impact
on the original image.

Histogram equalization.
The second method is called histogram equalization. Histogram equal-

ization is simply a transformation of the original distribution of pixels such
that the resulting histogram is more evenly distributed from black to white.

We start by computing the distribution of the pixel shades (a frequency
array or a histogram H). Histogram is a simple count of the number of oc-
currences of each pixel shade (a frequency chart). (For example a histogram

4



Exercise Set 8 c©2010 Felleisen, Proulx, et. al.

of rolling a die 100 times may tell us that we rolled 1 15 times, 2 18 times, 3
17 times, 4 12 times, 5 15 times and 6 13 times.)

We start by reading all pixel data and building the histogram. Let us
assume that hi is the number of pixels of the shade i and that h is the count
of all pixels in the image.

We compute the scaling factor si of each pixel initially at gray level i as:

si = (1/h) ∗ sum(h0, h1, h2, ..., hi)

where h is the total number of pixels and hi is the number of pixels at
gray level i (i.e. the histogram data).

Once we have the scaling factors, we compute newshadei = 255 ∗ si
Of course, again we do not want to keep recomputing these values and

store them in a lookup table instead.
Include in your program a visual display of the histogram you have

computed to verify that our assumptions about the color distribution are
correct.

Note: You will need to read the Mars data file twice - first just to com-
pute the histogram and set up the mapping of old shades to new ones, the
second time, reading the old shades and writing the new shades into the
output file.

Colorization
Explore what happens to your image when you add a bit of coloring to

it. One way to do it is by replacing the gray shade color

new Color(shade, shade, shade);

by

new Color(shade, 255 - shade, 255 - shade);

Color processing
The class ImageReader allows you to read any .bmp or .png file and an-

alyze the individual pixels. The constructor expects the name of the file to
be read. It reads the file and initializes the value of the width and height
fields for the given image.

The method Color getColorPixel(int x, int y) returns the color
value of the pixel at the given location. You can extract the red, blue, and

5



c©2010 Felleisen, Proulx, et. al. Exercise Set8

green component of the color as integers using the methods

c.getRed()
c.getGreen()
c.getBlue()

Create a negative of the given Flowers.png image. Explore other ways of
manipulating the images and document your exploration.

1. Create a project MarsImages and include the files MarsReader.java,
ImageBuilder.java. Include in your project a class MarsAlgorithms
where you will implement several image processing algorithms.

2. Design the method setMinMax that will read a Mars image data and
determine the minimum (greater than 0) and the maximum shade in
the image, i.e. ignore the shade 0 and save the values.

3. Design the method buildLinearScaleMap needed to implement
the linear scaling algorithm described earlier. The method consumes
the minimum and maximum shade you have computed and produce
an ArrayList pixelMap that can be used as a lookup table as fol-
lows. If the linear scaling algorithm changes the shade p − old to
shade p − new, then the value of the pixelMap.get(p-old) will
be p-new.

4. Design the method enhanceMars that reads a Mars image, processes
the pixel data and displays (and saves) the image enhanced by de-
ploying the linear scaling algorithm.

Your method should read the Mars image file and create a new image
using the ImageBuilder or ImageBuilder2.

5. Design the method computeHistogram that consumes the Mars im-
age data and produces an ArrayList of frequencies for each color
of the pixel (i.e. an ArrayList of size 256.

6. Design the method that will display the histogram as a bar chart in a
Canvas.

7. Design the method that will consume a histogram for 256 pixel shades
and produce an ArrayList pixelMap that can be used as a lookup
table as follows. If the histogram equalization algorithm changes the

6



Exercise Set 8 c©2010 Felleisen, Proulx, et. al.

shade p− old to shade p−new, then the value of the pixelMap.get(p-old)
will be p-new.

8. Add the code needed to produce an even better Mars image file by
processing the byte data using the histogram equalization algorithm:
at this point all you need to do is replace each shade by the shade
defined by the pixelMap.

Note that you will need to read the Mars data twice.

9. Design a method colorize that will colorize the Mars image, i.e.
use MarsReader to read the Mars data and display a colorized im-
age. You may want to experiment with different ways of changing
the colors.

10. Design a method separate that will read the data for a regular color
image using the ImageReader and separate the image into its three
basic color component, displaying each color in one of three Canvases
simultaneously.

References

The idea for this lab came from the book by Robert S. Wolff and Larry
Yaeger, Visualization of Natural Phenomena, Springer Verlag 1993 (TELOS Se-
ries)

Thanks also to Peter Ford from MIT who helped us locate the original
image data file.

In 1999, The Viking Orbiter and other planetary data files could be found
at

ftp://pdsimage.wr.usgs.gov/cdroms/

We suggest using the files in vo 2002 that start with mg. For example:

ftp://pdsimage.wr.usgs.gov/cdroms/vo_2002/mg25sxxx/mg25s022.img

These files are relatively small, about 100K and contain images that are
approximately 300 by 300 pixels. See

ftp://pdsimage.wr.usgs.gov/cdroms/vo_2002/volinfo.txt

for a description of the file format.

7


