Exercise Set 8 (©2010 Felleisen, Proulx, et. al.

8 Direct Access Data Structures

Practice Problems

Practice problems help you get started, if some of the lab and lecture material is
not clear. You are not required to do these problems, but make sure you understand
how you would solve them. Solving them on paper is a great preparation for the
exams.

Finish Lab 8.

Working with the StringTokenizer

Set up a simple project, designing your solutions in the Al gor i t hns class.
Add to your project the class Words.java from the assignment web site.

1. Look up the StringTokeni zer class in JavaDocs. The methods
there allow you to traverse over a St ri ng and produce one word at
a time delimited by the selected characters. Read the examples. Then
write the method makeWr ds that consumes one St r i ng (that repre-
sents a sentence with several words, commas, and other delimiters and
produces an Ar r ayLi st <St ri ng> of words (St ri ngs that contain
only letters — we ignore the possibility of words like “don’t”). The
delimiters you should recognize are the comma, the semicolon, and
the question mark.

2. The text in theAr r ayLi st <Stri ng> wor ds in the class Wor ds is a
secret encoding. It represents verses from a poem - if you read only
the first words. Design the method fi r st Wr d that produces the
first word from a given St ri ng. Use it to decode the poem.

Pair Programming Assignment

8.1 Insertion Sort

We have seen the recursively defined insertion sort algorithm both in the

first semester and also recently, using the recursively defined lists in Java.
The main idea behind the insertion sort was that each new item has

been inserted into the already sorted list. We can modify this as follows:

(©2010 Felleisen, Proulx, et. al. Exercise Set8

1. Design the method sort edl nsert that consumes asorted ArrayLi st <T>]
a Conpar at or <T> that has been used to define the sorted order for
the given list, and an item of the type T. It modifies the given Ar r ayLi st <T>|
by adding the given item to the ArrayLi st <T>, preserving the or-
dering.

Note: Be careful to make sure it works correctly when the given Ar r ayLi st |
is empty, and when the item is inserted at the end of the Arr ayLi st .

2. Design the method i nserti onSort that consumes an arbitrary (un-
sorted) ArrayLi st <T>and a Conpar at or <T> and produces a new
sorted ArrayLi st <T> as follows:

It starts with an empty sorted list and inserts into it one by one all the
elements of the given Arr ayLi st <T>.

Note: It is a bit more difficult to define the insertion sort algorithm so
that it mutates the existing Arr ayLi st in place.

3. Extra Credit

Design an in-place i nserti onSort method. You will get the credit
only if the design is neat and clearly organized.

8.2 Mars Images: Image Processing

We ask you to work with with image data, and learn two simple techniques
for enhancement of images defined by pixel shades. Additionally, you will
learn how secret images can be encoded in an image, and explore the power
of colorization of images.

You will read images data files of NASA images of the planet Mars, dis-
play the images as received from the Viking Explorer, and by manipulating
this data generate enhanced images.

Read the following tutorial /explanation of the techniques you will use.
The detailed description of the classes and methods you should design
is at the end of the tutorial.

The Images

The data in the files mg20s002, mg20s007, etc. came from a NASA juke-
box of planetary images. Each file starts with several lines of text (a label)
that identifies the image - the location on Mars, the resolution (how large

2

Exercise Set 8 (©2010 Felleisen, Proulx, et. al.

an area is represented by one pixel), what spacecraft took the image, and
the information about the size of the image data (number of lines and the
number of pixels per line). After the label is histogram data - specifying
how many pixels there are of each shade (gray shade, just like the color
shades, has values in the range from 0 to 255). The last part of the file con-
tains the image data: each pixel is represented as one byte.

Your program that manipulates the images should use the given library
class Mar sReader . You will use the following functionality of the class
Mar sReader :

e The constructor for Mar sReader looks for the original Mars image
file, reads the file labels and stores them in the field | abel s.

e The constructor then initializes the field Buf f er edl nput St r eambyt est r eani
to deliver the bytes of the selected image.

To create new images and save then as .png files, use the given class
| mageBui | der . It works as follows:

e The constructor also initializes the field Buf f er edl mage i mage thatl
is ready to receive the data needed to represent the resulting image.
You need to supply the height and the width of the image.

e The method set Col or Pi xel (x, y, r, g, b) setsthe color of
the given pixel in the i mage to the specified RGB shade.

e The method publ i ¢ void savel mage(String fil enane) saves|
the image you have created in the .png format — it adds the .png to
the filename you specify.

Image Processing

Each pixel shade is represented as one byte. You can read one byte of data
from the byt est r eamusing the method

int read()

The integer will be in the range from 0 to 255.

All images in this collection have the same size: 320 lines of 306 pixels in
each line. You can set the color of each individual pixel in the Buf f er edl mage]
i mage using the method

void setColorPixel (int x, int y, int r, int g, int b)

(©2010 Felleisen, Proulx, et. al. Exercise Set8

A ’black and white’ image is represented by pixels of different shade of
gray. By choosing set Col or Pi xel (x, y, s, s, s) withvaluesofs
ranging from 0 to 255 we can represent 256 different shades of gray.

In pictures of low quality the range of the shades is often much smaller
than 256. For example, in the images from Mars most of the shades are in
the range between about 70 and 170, leaving more than half of the shades
unused. Image enhancement methods take advantage of this deficiency.

Linear scaling.

The first method uses linear scaling to modify the shade of each pixel. It
starts with computing the minimum and maximum of the existing shades.
It then scales each shade so that the range of shades is expanded to 256
values. The scaling formula is:

newshade = (ol dshade - mn) = (255 / (max - min));

That means that in our example (the range between 70 and 170), ol dshade=70]
would be represented as newshade=0, similarly, ol dshade=170 would
be represented as 255, and finally, ol dshade=100 would be represented
as (100 - 70) * (255 / (170 - 70)) = 30 * 2.55 = 76.5,0r
newshade=76:

old shade | new shade
70 0

170 255

100 76.5

We do not want to do this computation for every pixel over and over
again. Instead, we should save the computed values in a table indexed by
the ol dshade values with the newshade values in the table.

Implement the linear scaling image processing and observe the impact
on the original image.

Histogram equalization.

The second method is called histogram equalization. Histogram equal-
ization is simply a transformation of the original distribution of pixels such
that the resulting histogram is more evenly distributed from black to white.

We start by computing the distribution of the pixel shades (a frequency
array or a histogram H). Histogram is a simple count of the number of oc-
currences of each pixel shade (a frequency chart). (For example a histogram

4

Exercise Set 8 (©2010 Felleisen, Proulx, et. al.

of rolling a die 100 times may tell us that we rolled 1 15 times, 2 18 times, 3
17 times, 4 12 times, 5 15 times and 6 13 times.)

We start by reading all pixel data and building the histogram. Let us
assume that /; is the number of pixels of the shade i and that / is the count
of all pixels in the image.

We compute the scaling factor s; of each pixel initially at gray level i as:
S; = (1/]’[) * sum(ho, hl, hz, ooy ”ll)

where /1 is the total number of pixels and hi is the number of pixels at
gray level i (i.e. the histogram data).

Once we have the scaling factors, we compute newshade; = 255 * s;

Of course, again we do not want to keep recomputing these values and
store them in a lookup table instead.

Include in your program a visual display of the histogram you have
computed to verify that our assumptions about the color distribution are
correct.

Note: You will need to read the Mars data file twice - first just to com-
pute the histogram and set up the mapping of old shades to new ones, the
second time, reading the old shades and writing the new shades into the
output file.

Colorization
Explore what happens to your image when you add a bit of coloring to
it. One way to do it is by replacing the gray shade color

new Col or (shade, shade, shade);

by
new Col or (shade, 255 - shade, 255 - shade);

Color processing

The class | mageReader allows you to read any .bmp or .png file and an-
alyze the individual pixels. The constructor expects the name of the file to
be read. It reads the file and initializes the value of the wi dt h and hei ght
fields for the given image.

The method Col or get Col or Pi xel (i nt x, int y) returnsthe color]
value of the pixel at the given location. You can extract the red, blue, and

5

(©2010 Felleisen, Proulx, et. al. Exercise Set8

green component of the color as integers using the methods

c. get Red()
c.getGeen()
c. get Bl ue()

Create a negative of the given Flowers.png image. Explore other ways of
manipulating the images and document your exploration.

1. Create a project MarsImages and include the files Mar sReader . j ava,
| mageBui | der . j ava. Include in your project a class Mar sAl gori t his|]
where you will implement several image processing algorithms.

2. Design the method set M nMax that will read a Mars image data and
determine the minimum (greater than 0) and the maximum shade in
the image, i.e. ignore the shade 0 and save the values.

3. Design the method bui | dLi near Scal eMap needed to implement
the linear scaling algorithm described earlier. The method consumes
the minimum and maximum shade you have computed and produce
an ArrayLi st pi xel Map that can be used as a lookup table as fol-
lows. If the linear scaling algorithm changes the shade p — old to
shade p — new, then the value of the pi xel Map. get (p-ol d) will
be p- new.

4. Design the method enhanceMar s that reads a Mars image, processes
the pixel data and displays (and saves) the image enhanced by de-
ploying the linear scaling algorithm.

Your method should read the Mars image file and create a new image
using the | mageBui | der or | mageBui | der 2.

5. Design the method conput eHi st ogr amthat consumes the Mars im-
age data and produces an ArrayLi st of frequencies for each color
of the pixel (i.e. an Arr ayLi st of size 256.

6. Design the method that will display the histogram as a bar chart in a
Canvas.

7. Design the method that will consume a histogram for 256 pixel shades]
and producean Arr ayLi st pi xel Map that can be used as a lookup
table as follows. If the histogram equalization algorithm changes the

6

Exercise Set 8 (©2010 Felleisen, Proulx, et. al.

shade p — old to shade p — new, then the value of the pi xel Map. get (p-ol d) ||
will be p- new.

8. Add the code needed to produce an even better Mars image file by
processing the byte data using the histogram equalization algorithm:
at this point all you need to do is replace each shade by the shade
defined by the pi xel Map.

Note that you will need to read the Mars data twice.

9. Design a method col ori ze that will colorize the Mars image, i.e.
use Mar sReader to read the Mars data and display a colorized im-
age. You may want to experiment with different ways of changing
the colors.

10. Design a method separ at e that will read the data for a regular color
image using the | mageReader and separate the image into its three
basic color component, displaying each color in one of three Canvases
simultaneously.

References

The idea for this lab came from the book by Robert S. Wolff and Larry
Yaeger, Visualization of Natural Phenomena, Springer Verlag 1993 (TELOS Se-
ries)

Thanks also to Peter Ford from MIT who helped us locate the original
image data file.

In 1999, The Viking Orbiter and other planetary data files could be found
at

ftp://pdsi mage. w. usgs. gov/ cdromns/
We suggest using the files in vo_2002 that start with mg. For example:
ftp://pdsi mage. w. usgs. gov/ cdrons/ vo_2002/ ng25sxxx/ ng25s022. i nygl

These files are relatively small, about 100K and contain images that are
approximately 300 by 300 pixels. See

ftp://pdsi mage. w. usgs. gov/ cdrons/vo_2002/ vol i nf o. t xt

for a description of the file format.

