
Exercise Set 10 c©2010 Felleisen, Proulx, et. al.

10 Applications

Practice Problems: The Java Collections Framework

Practice problems help you get started, if some of the lab and lecture material is
not clear. You are not required to do these problems, but make sure you understand
how you would solve them. Solving them on paper is a great preparation for the
exams.

Read through the documentation for Java Collections Framework li-
brary. Find how you can run use the stacks and queues defined there. Write
a simple program that will test these algorithms and measure their timing
in a manner similar to the previous lab.

10.1 Eliza

Finish all the Eliza part Lab 10 and hand in the completed work with your
partner.

10.2 Graph Algorithms: BFS, DFS, Shortest Path

This problem is a continuation and refinement of the Stacks and Queues
problem from Lab 10.

Graph

Your program needs to represent a graph with nodes that represent capitals
of the 48 US states. Each node has a name — the name of the state. For
each node, record the information about the capital of that state. Each edge
represents a bi-directional connection between two adjacent states. You
may consider the four corner states: Colorado Utah, Arizona and New Mexico as
connected to each other. Each edge has a value that represents the distance
between the capitals of the two states. The distances between two cities
are based on the geographic distance. (See a separate announcement for a
shortcut you can use to compute this distance.)

Algorithms

Your model should implement three graph traversal algorithms:

1



c©2010 Felleisen, Proulx, et. al. Exercise Set 10

• Depth-First Search: uses a Stack to record the ToDo information

• Breadth-First Search: uses a Queue to record the ToDo information

• Shortest Path Search: uses a Priority Queue to record the ToDo infor-
mation

To implement the shortest path you need to represent a priority queue.
The detailed description of the algorithm appears in a separate docu-

ment. You will encounter a significant penalty for repeating the code - one
algorithm implementation should run all three variants, distinguishing be-
tween them by selecting the appropriate implementation of a common in-
terface for dealing with the ToDo information.

Using Libraries

Furthermore, throughout the project you are encouraged to leverage as
much as possible from the existing Java libraries (both the Java Collections
Framework, and the JPT libraries). The designer should focus on the design
of interfaces between tasks, between components, wrapper and adopter
class that allow you to use an existing library class in a customized setting.

User interactions

The file GraphAlgoView.java provides the code that creates a GUI allow-
ing the user to select one of the three algorithms, the origin and the desti-
nation for the path.

Read the code, or at least the documentation and find the three places
where you need to add the code that will invoke your implementation of
the three algorithms.

You need to add code to your program that will show the user the path
you have computed.

Before the user selects the algorithm to use and the origin and the desti-
nation for the path, she must be able to view a representation of the graph
for which the computation is to be done.

This can be a graphical display, a text that lists the nodes and the edges
(with their weights), or a graphical display of the text that lists the nodes
and the edges.

Once the path has been computed, the user should be able to see the
resulting path.

2



Exercise Set 10 c©2010 Felleisen, Proulx, et. al.

This may be a graphical display, or just a text listing the nodes along the
path.

Here is a list of possible enhancements:

• Highlight the path is a different color in the graphics display.

• Display the steps in the search by highlighting in a different color
the visited nodes, the fringe nodes (those currently in the queue or
the stack), the origin, the target, and the unseen nodes. Animate the
process using either the timer, or a user advance triggered by a key
press.

• Animate the reconstruction of the path by traversing from the found
target back to the previous node, all the way up to the origin.

3


