
CS 2510 Exam 3 SOLUTION Spring 2011

Name:

Student Id (last 4 digits):

Section (Proulx / Chadwick):

• Read the questions carefully and write
down your answers in the space provided.
• You may use all parts of the Java lan-
guage we have learned. If you need a method
and you don’t know whether it is provided,
define it. You do not need to include the
curly braces for every if/else, as long as
the statements you write are correct in stan-
dard Java.
• For tests you only need to provide the
expression that computes the actual value,
connecting it with an arrow to the expected
value. For example s.method() -> true is
sufficient.
• Remember that the phrases “design a class”
or “design a method” mean more than just
providing a definition. It means to design
them according to the design recipe. You
are not required to provide a method tem-
plate unless the problem specifically asks for
one. However, be prepared to struggle if you
choose to skip the template step.
• We will not answer any questions during
the exam. If a problem seems ambiguous,
make an intelligent decision and document
your assumptions.

Good luck.

Problem Points /

1 / 6

2 / 12

3 / 12

4 / 16

5 / 6

Total / 52

A startup game-design company, B-Mazing, is working on a simple maze game
that teaches children (or undergraduates) to follow the directions. According to the
CEO, a maze is a rectangular grid with a path that the player must follow. The path
is a series of moves that starts in the upper-left corner of the grid (where the player
starts) and ends in the lower-right corner. To keep things simple (for the undergrads)
the paths will never contain loops, short-cuts, or dead-ends: there is only one next
direction along the path (though you will not need to enforce this).

During the game, the player hits one of the arrow keys ("up", "down", "left",
or "right"). If the key corresponds to the next direction on the path then player
advances along the path, otherwise the player looses a life. The game ends when the
player has reached the end of the path (lower-left corner), or when the player runs
out of lives.

The three pictures below show the prototype implementation at the start, middle,
and completion of a successful game:

Unfortunately, the prototype is very limited, so the company wants you to design
classes and methods to help implement the game. Fortunately, your manager under-
stands the power of programming to interfaces and she has designed the interface on
the next page to represent maze-paths in the game.

2

interface IMaze extends Iterable <String >{

/** Returns an iterator for the directions/path through

* this maze. The iterator specifies the directions

* (in order) that the player must move.

* Repeated obligation from Iterable <String > */

Iterator <String > iterator ();

/** Is this maze’s path valid for its width and

* height? (Is it completely on the grid?) */

boolean isValid ();

/** Returns the width of this maze grid */

int getWidth ();

/** Returns the height of this maze grid */

int getHeight ();

/** Set the lives for the player */

void setLives(int lives);

/** Returns the player ’s lives */

int getLives ();

/** Record a bad move by decreasing the player ’s lives */

void badMove ();

}

3

Problem 1 6 Points

Your team has decided that you will (first) be responsible for the model portion
of the game: representing the size of the grid and the path that a player will follow.
Design the class Maze that implements the IMaze interface.

For this problem you only need to give a data definitions and examples
(class definition(s), fields, constructor(s), and instances). One of your examples must
be the small maze/path represented in the earlier pictures.

Hint : Read the game description again, carefully, in order to decide what/how in-
formation should be represented in your class. Think about the methods that must
be implemented from the interface (for later questions). Using/defining/designing
helper classes is Ok.

Solution

class Maze implements IMaze{

int width;

int height;

int lives;

ArrayList <String > path;

Maze(int width , int height , int lives , ArrayList <String > path){

this.width = width;

this.height = height;

this.lives = lives;

this.path = path;

}

}

class Examples{

IMaze smallmaze;

void init (){

ArrayList <String > smallpath = new ArrayList <String >();

smallpath.add("down");

smallpath.add("down");

smallpath.add("right");

smallpath.add("up");

smallpath.add("right");

smallpath.add("right");

smallpath.add("down");

smallpath.add("down");

this.smallmaze = new Maze(4, 4, 3, smallpath);

}

}

4

... This page is intentionally blank for your work ...

5

Problem 2 12 Points

Design the method isValid for your Maze class. A valid maze path ends in the
lower-right corner and never leaves the bounds of the game grid (when starting from
the upper-left corner). Again, you may assume the path is free from loops/dead-ends,
you should only check the bounds.

Note 1 : You should be able to design this method using only the methods provided
by the IMaze interface.

Note 2 : It may be useful to design a helper class to keep track of the row and column
of the maze path — feel free to add it to your design.

Solution

boolean isValid (){ ... }

6

... This page is intentionally blank for your work ...

7

Problem 3 12 Points

Design the remaining methods from the IMaze interface (i.e., iterator, getWidth,
getHeight, setLives, getLives, and badMove).

Solution

/** Returns an iterator for the path through this maze. */

Iterator <String > iterator (){ return this.path.iterator (); }

/** Returns the width of this maze grid */

int getWidth (){ return this.width; }

/** Returns the height of this maze grid */

int getHeight (){ return this.height; }

/** Set the lives for the player */

void setLives(int lives){ this.lives = lives; }

/** Returns the player ’s lives */

int getLives (){ return this.lives; }

/** Record a bad move by decreasing the player ’s lives */

void badMove (){ this.lives --; }

8

... This page is intentionally blank for your work ...

9

Problem 4 16 Points

Now that you have an implementation of IMaze, you are ready to design some
of the behavior of the game. The designer of the drawing method needs your game
class to contain (1) an IMaze so that she can correctly draw the grid/path, (2) a
representation of the rest of the path to be traveled, and (3) the player’s current
location. But, you may add other fields as needed.

The display designer will provide you with a void method showMove() method, your
task is to design the class MazeGame, and two methods: onKey and stopWhen.

A. Design MazeGame and provide examples.

Solution

class MazeGame{

IMaze maze;

...

}

B. Design the method void onKey(String), that responds to key events as fol-
lows:

• The game should only respond to the four arrow keys: "up", "down",

"left", "right".

• If the key is in the direction of the next maze path, move the current
location accordingly and invoke the provided showMove method. Note:
you need to keep track where you are on the path along the maze.

• If the player moves in a direction other than given by the next maze path,
leave the player at the current location, and invoke the badMove method
on the game’s maze.

Solution

void onKey(String key){ ... }

C. Design the method: boolean stopWhen() that produces a boolean value true
when the game has ended. There are possible endings to the game:

• The player reaches the end of the maze path successfully, or

• The player has no lives left

Solution

boolean stopWhen (){ ... }

10

... This page is intentionally blank for your work ...

11

... This page is intentionally blank for your work ...

12

Problem 5 6 Points

Implement the method boolean noLoops() for your Maze class that verifies that
this maze’s path does not contain any loops, i.e., it never goes through the same grid
point twice.

13

Library classes/interface reminders:

/*** class ArrayList <T>: ***/

/** Remove all elements from this list */

void clear ();

/** Add the element at the end of this list */

boolean add(T t);

/** Add the element at the given index , shifting all

* items after to the right */

void add(int index , T t);

/** Get the element at the given index */

T get(int index);

/** Set the element at the given index to the given

* value and return the index ’s previous value */

T set(int index , T t);

/** Returns true if this list contains no elements */

boolean isEmpty ();

/** Removes (and returns) the element at the given index */

T remove(int index);

/** Returns the number of elements in this collection */

int size ();

/*** interface Iterable <T>: ***/

/** Returns the iterator for this data set */

Iterator <T> iterator ();

/*** interface Iterator <T>: ***/

/** Are there additional items available this data set */

boolean hasNext ();

/** Produce the next item in this data set

* EFFECT: modify this iterator to point to the next item */

T next ();

14

