
Lab 9 c©2010 Felleisen, Proulx, et. al.

9 Loops; Sorting

Goals

In the first part of the lab you will learn how to convert recursive loops to
imperative (mutating) loops using either the Java while statement or the
Java for statement to implement the imperative loops.

In the second part we will look at how we can leverage the direct ac-
cess to the items within the data set to implement a new kind of sorting
algorithm.

For this lab download the files in Lab9-fl2010.zip. The folder contains
the following files:

• The file Balloon.java — our sample data class

• The file ISelect.java— the interface for a generic predicate method

• The files RedBallon and SmallBalloon that implement the ISelect
interface for the Balloon data.

• The files IList.java, MTList.java, and ConsList.java that
define a generic cons-list that implements the Traversal interface.

• The file ArrListTraversal.java shows how we can define a Traver-
sal wrapper for the ArrayList class.

• The Algorithms.java file shows an implementation of several al-
gorithms that consume data generated by a Traversal iterator and
illustrates a number of ways in which loops can be implemented in
Java.

• The Examples.java file that defines examples of all data and de-
fines all tests.

Create a new Project Lab9 and import into it all files from the zip file.
Import the tester.jar and colors.jar.

9.1 Converting Recursive Loops into Imperative while Loops

The goal of this part of the lab is to make sure you know how to imple-
ment a traversal over data within an ArrayList using Java while and for

1

c©2010 Felleisen, Proulx, et. al. Lab 9

loops. Make sure you understand the role of each part of the loop method
definition: BASE VALUE, CONTINUATION-PREDICATE, CURRENT, AD-
VANCE, UPDATE, and know how to construct both the while loop and
the for loop.

• Work with the Lab handout. The first page gives you an overview
of all classes and interfaces and the relationship between them. We
introduce a dotted line from a method that consumes an instance of
some class to that class.

• Read first the code for the containsmethod and for the countSuch
method in the Algorithms class. These have been designed in the
classical HtDP style.

• We will look together at the next two examples of orMap in the Algorithms
class.

We first write down the template for the case we already know — the
one where the loop uses the Traversal iterator. As we have done
in class, we start by converting the recursive method into a form that
uses the accumulator to keep track of the knowledge we already have,
and passes that information to the next recursive invocation.

Read carefully the Template Analysis and make sure you understand
the meaning of all parts.

2

Lab 9 c©2010 Felleisen, Proulx, et. al.

TEMPLATE - ANALYSIS:

return-type method-name(Traversal tr){

+--------------------+
// invoke the methodAcc: | acc <-- BASE-VALUE |

+--------------------+
method-name-acc(Traversal tr, BASE-VALUE);

}

return-type method-name-acc(Traversal tr, return-type acc)
... tr.isEmpty() ... -- boolean ::PREDICATE
if true:
... acc -- return-type ::BASE-VALUE
if false:

+---------------+
...| tr.getFirst() | ... -- E ::CURRENT

+---------------+

... update(T, return-type) -- return-type ::UPDATE
+----------------------------+

i.e.: ...| update(tr.getFirst(), acc) | ...
+----------------------------+

+--------------+
... | tr.getRest() | -- Traversal<T> ::ADVANCE

+--------------+

... method-name(tr.getRest(), return-type) -- return-type
i.e.: ... method-name-acc(tr.getRest(), update(tr.getFirst(), acc))

Based on this analysis, we can now design a template for the entire problem — with the solution
divided into three methods as follows:

COMPLETE METHOD TEMPLATE:

<T> return-type method-name(Traversal<T> tr){

+------------+
method-name-acc(Traversal tr,| BASE-VALUE |);

+------------+
}

<T> return-type method-name(Traversal<T> tr, return-type acc){
+--------------+

if (| tr.isEmpty() |)
+--------------+

return acc;
else

+--------------+
return method-name-acc(| tr.getRest() |,

+--------------+
+----------------------------+
| update(tr.getFirst(), acc) |);
+----------------------------+

}

<T> return-type update(T t, return-type acc){ ...
}

3

c©2010 Felleisen, Proulx, et. al. Lab 9

Understanding orMap

• Look at the first two variants of the orMap method (the recursively
defined variant and the variant that uses the while loop. Identify the
four parts (BASE-VALUE, Termination/Continuation PREDICATE,
UPDATE, and ADVANCE) in each of them.

Look also at the tests in the Examples class.

• After you understand how the while loop works, design two vari-
ants of the method that produces a new ArrayList that contains all
elements of the original list that satisfy the given ISelect predicate.

Test the methods by producing all red balloons or all small balloons.

• Design and test two variants of the andMap method that determines
whether all elements of a given list satisfy the given ISelect predi-
cate.

Test the methods by checking whether a list contains all red balloons
or all small balloons.

Converting while loops into for loops

Repeat all the parts of the previous task with the remaining two variants of
the orMap — namely the one that uses the for loop with the Traversal
and the one that uses counted for loop.

For Each

Optionally, you may look at the ultimate abstraction of these traversals
shown in the ForEach class.

1. Read the tests for for each variant of the compute method of the
ForEach class shown in the Examples class. Make sure you un-
derstand how they work. Design additional tests for each of the three
compute methods.

4

Lab 9 c©2010 Felleisen, Proulx, et. al.

9.2 Sorting

Selection sort is one of the familiar sorting algorithms. It is well suited
for the situations where you are trying to minimize the moving of the data
from one location to another.

Suppose you have an ArrayList of data of size s in which the first k
elements are sorted, and every item in the unsorted part is greater than the
largest item in the sorted part.

You would like to sort the rest of the ArrayList. We know how to
swap two items in the ArrayList. So, if we can find the location of the
smallest item in the unsorted part and swap it with the first item in the
unsorted part, the sorted part will be one item bigger, and the unsorted
part will be one item smaller.

If we repeat this until the last item is swapped into its correct position,
we will have finished sorting the remainder of the ArrayList.

Here is an example:

>--- sorted ------< >--- unsorted ------------<
+----+----+----+----++----+----+----+----+----+----+
| 0 | 1 | 2 | 3 || 4 | 5 | 6 | 7 | 8 | 9 |
+----+----+----+----++----+----+----+----+----+----+
| 13 | 16 | 17 | 20 || 27 | 31 | 22 | 25 | 28 | 29 |
+----+----+----+----++----+----+----+----+----+----+

ˆ
min unsorted

Swap elements at locations 4 and 6:

>-------- sorted ------< >--- unsorted -------<
+----+----+----+----+----++----+----+----+----+----+
| 0 | 1 | 2 | 3 | 4 || 5 | 6 | 7 | 8 | 9 |
+----+----+----+----+----++----+----+----+----+----+
| 13 | 16 | 17 | 20 | 22 || 31 | 27 | 25 | 28 | 29 |
+----+----+----+----+----++----+----+----+----+----+

ˆ
min unsorted

Swap elements at locations 5 and 7:

>--------- sorted ----------< >--- unsorted ---<
+----+----+----+----+----+----++----+----+----+----+
| 0 | 1 | 2 | 3 | 4 | 5 || 6 | 7 | 8 | 9 |
+----+----+----+----+----+----++----+----+----+----+
| 13 | 16 | 17 | 20 | 22 | 25 || 27 | 31 | 28 | 29 |
+----+----+----+----+----+----++----+----+----+----+

ˆ
min unsorted

5

c©2010 Felleisen, Proulx, et. al. Lab 9

Swap elements at locations 6 and 6:

>----------- sorted -------------< >- unsorted -<
+----+----+----+----+----+----+----++----+----+----+
| 0 | 1 | 2 | 3 | 4 | 5 | 6 || 7 | 8 | 9 |
+----+----+----+----+----+----+----++----+----+----+
| 13 | 16 | 17 | 20 | 22 | 25 | 27 || 31 | 28 | 29 |
+----+----+----+----+----+----+----++----+----+----+

ˆ
min unsorted

What about the case when none of the ArrayList is sorted? Well, then
the sorted part has size 0, and the unsorted part starts at the index 0.

1. In the Algorithms class design the helper method findMinLoc
that finds the location of the smallest item in the unsorted part of
the given ArrayList.

Note: Think carefully through the first step of the design recipe, to make
sure you know what the method consumes and what does it produce.

2. In the Algorithms class design the method selectionSort that
implements the selection sort algorithm.

3. Design two Comparators for the Balloons, the BalloonsBySize
that compares the balloons by their radius, and BalloonsByHeight
that compares them by their distance to the top.

4. Test your sorting method and the helper method on lists of balloons
using each of the two Comparators.

6

