
CS 2510 Exam 2 – Fall 2010

Name:

Student Id (last 4 digits):

• Write down the answers in the space pro-
vided.
• You may use any features of standard Java,
except the instanceof operator. If you need
a method and you don’t know whether it is
provided, you must define it. You do not need
to include the curly braces for every if or
every else, as long as the statements you
write are otherwise correct.
• For tests you only need to provide the
expression that computes the actual value,
connecting it with an arrow to the expected
value. For example s.method() -> true is
sufficient.
• Remember that the phrase “design a class”
or “design a method” means more than just
providing a definition. It means to design
them according to the design recipe. You
are not required to provide a method tem-
plate unless the problem specifically asks for
one. However, be prepared to struggle if you
choose to skip the template step.
• We will not answer any questions during
the exam.

Good luck.

Problem Points /
A / 0
B / 4
C / 8
D / 8
D / 4

Total /26

25 Points
Problem 1

Here is a Java class diagram that describes the information we have about
a number of persons and their ancestors:

+-----------------+
| |
v |

+------+ |
| ILoP | |
+------+ |
/ \

--------------- |
| | |

+-------+ +-----------+ |
| MtLoP | | ConsLoP | |
+-------+ +-----------+ |

+--| AT first | |
| | ILoP rest |--+
| +-----------+
|
| +-------------------+
| | +----------------+|
| | | ||
v v v ||
+-----+ ||
| AT | ||
+-----+ ||
/ \ ||
--- ||
| ||

---------------- ||
| | ||

+---------+ +----------- + ||
| Unknown | | Person | ||
+---------+ +-------------+ ||

| String name | ||
| AT mom |-+|
| AT dad |--+
+-------------+

2

A. (0 points)

You are not required to do this. You may want to see what
the data definitions look like. Do not spend much time on
this, unless you do not understand what the data represents.
The examples in the next part should make that clear.

Write down the Java class and interface definitions that are represented
by this class diagram.

Solution [POINTS 0:]

// to represent a list of persons
interface ILoP{ }

// to represent an empty list of persons
class MtLoP implements ILoP{
MtLoP(){}

}

// to represent a nonempty list of persons
class ConsLoP implements ILoP{
AT first;
ILoP rest;

ConsLoP(AT first, ILoP rest){
this.first = first;
this.rest = rest;

}
}

// to represent an ancestor tree of a person, or an unknown ancestor
interface AT{ }

// to represent an unknown ancestor in an ancestor tree
class Unknown implements AT{
Unknown(){}

}

// to represent a person in an ancestor tree
class Person implements AT{
String name;

3

AT mom;
AT dad;

Person(String name, AT mom, AT dad){
this.name = name;
this.mom = mom;
this.dad = dad;

}
}

4

B. (4 points)

Make examples of the data, if you know the following about the various
people:

We have information about Ann, Cal, Dan, Eli, Fay, Jon, Kim, Liz,
May, Pat, Ron, Sam, Tom, Val, and Zoe. (You may use just the first
initials instead of the full names.)

Ann’s mom is May, Ann’s dad is Sam Dan’s mom is Fay, Dan’s dad
is Ron Eli’s mom is Liz, Eli’s dad is Tom Kim’s mom is Pat, Kim’s
dad is Cal May’s dad is Jon Pat’s mom is May, Pat’s dad is Eli Sam’s
mom is Val, Sam’s dad is Ron Zoe’s mom is May, Zoe’s dad is Sam

We do not know anything about the remaining ancestors.

Solution [POINTS 4: 1 point for the
class Goal, 1 point for the class Tunnel, 2 points for the class Room]

AT xx = new Unknown();

AT cal = new Person("Cal", this.xx, this.xx);
AT fay = new Person("Fay", this.xx, this.xx);
AT jon = new Person("Jon", this.xx, this.xx);
AT liz = new Person("Liz", this.xx, this.xx);
AT ron = new Person("Ron", this.xx, this.xx);
AT tom = new Person("Tom", this.xx, this.xx);
AT val = new Person("Val", this.xx, this.xx);

AT dan = new Person("Dan", this.fay, this.ron);
AT eli = new Person("Eli", this.liz, this.tom);
AT may = new Person("May", this.xx, this.jon);
AT sam = new Person("Sam", this.val, this.ron);

AT ann = new Person("Ann", this.may, this.sam);
AT pat = new Person("Pat", this.may, this.eli);
AT zoe = new Person("Zoe", this.may, this.sam);

AT kim = new Person("Kim", this.pat, this.cal);

ILoP mtlop = new MtLoP();

ILoP plist =
new ConsLoP(this.ann,
new ConsLoP(this.cal,
new ConsLoP(this.dan,

5

new ConsLoP(this.eli,
new ConsLoP(this.fay,
new ConsLoP(this.jon,
new ConsLoP(this.kim,
new ConsLoP(this.liz,
new ConsLoP(this.may,
new ConsLoP(this.pat,
new ConsLoP(this.ron,
new ConsLoP(this.sam,
new ConsLoP(this.tom,
new ConsLoP(this.val,
new ConsLoP(this.zoe, this.mtlop)))))))))))))));

6

C. (8 points) Design the method ancestorList that produces a list (ILoP
of all Persons that are ancestors of a person. Do not include in the
list the unknowns, but do include the person himself/herself.

Solution [POINTS 8: (ancestorList: 1
point purpose/header; 2 points bodies in Person and AT/Unknown,
2 points tests); (append method for ILoP: 1 point purpose/header; 1
point bodies; 1 point tests)]

// in the interface ILoP:
// append the given list to this one
public ILoP append(ILoP that);

// in the class MtLoP:
// append the given list to this one
public ILoP append(ILoP that){
return that;

}

// in the class ConsLoP:
// append the given list to this one
public ILoP append(ILoP that){
return new ConsLoP(this.first, this.rest.append(that));

}

// in the class Examples:
// test the method valueOf for the maze classes
boolean testValueOf(Tester t){
return
t.checkExpect(this.gold.valueOf("Gold"), 20) &&
t.checkExpect(this.t2.valueOf("Gold"), 20) &&
t.checkExpect(this.t1.valueOf("Gold"), 0) &&
t.checkExpect(this.r0.valueOf("Gold"), 50);

}

in the interface AT:
//produce a list of ancestors for this person
public ILoP ancestorList();

7

in the class Unknown:
//produce a list of ancestors for this person
public ILoP ancestorList(){
return new MtLoP();

}

in the class Person:
// produce a list of ancestors for this person
public ILoP ancestorList(){
return new ConsLoP(this,

this.mom.ancestorList().append(this.dad.ancestorList()));
}

in the class Examples:
t.checkExpect(this.cal.ancestorList(),

new ConsLoP(this.cal, this.mtlop));

t.checkExpect(this.eli.ancestorList(),
new ConsLoP(this.eli,

new ConsLoP(this.liz,
new ConsLoP(this.tom, this.mtlop))));

t.checkExpect(this.pat.ancestorList(),
new ConsLoP(this.pat,

new ConsLoP(this.may,
new ConsLoP(this.jon,

new ConsLoP(this.eli,
new ConsLoP(this.liz,

new ConsLoP(this.tom, this.mtlop)))))));

8

D. (8 points)

Design the method hasCommon that determines whether two persons
(this and the given one) have a common ancestor.

Solution [POINTS 8: (3 points for
commonAncestor in AT...): 1 point purpose/header; 1 point body
for the Person class, 1 point examples;

(3 points for hasCommon in ILoP...): 1 point purpose/header; 1 point
body for the Cons class, 1 point examples;

(2 points for isInList in AT ...): 1 point purpose and body; 1 point
examples]

in the interface AT:
// does this and the given person have a common ancestor
public boolean commonAncestor(AT that);

// is this person in the given list of people -
// not counting Unknowns
public boolean inInList(ILoP that);

in the class Unknown:
// does this and the given person have a common ancestor
public boolean commonAncestor(AT that){
return false;

}

// is this person in the given list of people -
// not counting Unknowns
public boolean inInList(ILoP that){
return false;

}

// in the class Person:
// does this and the given person have a common ancestor
public boolean commonAncestor(AT that){
return this.ancestorList().hasCommon(that.ancestorList());

}

// is this person in the given list of people -
// not counting Unknowns
public boolean inInList(ILoP that){
return that.contains(this.name);

}

9

// in the interface ILoP:
// does this list and the given one contain a common person?
public boolean hasCommon(ILoP that);

// in the class MtLoP:
// does this list and the given one contain a common person?
public boolean hasCommon(ILoP that){
return false;

}

// in the class ConsLoP:
// does this list and the given one contain a common person?
public boolean hasCommon(ILoP that){
return
this.first.inInList(that) ||
this.rest.hasCommon(that);

}

// in the class Examples:
void testIsInList(Tester t){
t.checkExpect(this.ann.isInList(this.list1), true);
t.checkExpect(this.ann.isInList(this.list2), false);
t.checkExpect(this.ann.isInList(this.mtlop), false);

}

void testHasCommon(Tester t){
t.checkExpect(this.list1a.hasCommon(this.mtlop), false);
t.checkExpect(this.mtlop.hasCommon(this.list2), false);
t.checkExpect(this.list1a.hasCommon(this.list2), false);
t.checkExpect(this.list12.hasCommon(this.plist), true);

}

void testCommonAncestor(Tester t){
t.checkExpect(this.pat.commonAncestor(this.zoe), true);

}

10

... This page is intentionally left blank ...

11

E. (5 points)

Show the templates for all classes in this problem for which you have
designed methods.

Solution [POINTS 5: 2 points tem-
plate for ConsLoP; 2 points template for Person; 1 point for all other
templates]

// in the class Goal
TEMPLATE:
FIELDS:
... this.prize ... -- String
... this.value ... -- int

METHODS:
... this.valueOf(String) ... -- int
... this.longestPath() ... -- int

METHODS FOR FIELDS:

// in the class Tunnel
TEMPLATE:
FIELDS:
... this.next ... -- IMaze
... this.length ... -- int

METHODS:
... this.valueOf(String) ... -- int
... this.longestPath() ... -- int

METHODS FOR FIELDS:
... this.next.valueOf(String) ... -- int
... this.next.longestPath() ... -- int

// in the class Room
TEMPLATE:
FIELDS:
... this.left ... -- IMaze

12

... this.right ... -- IMaze

METHODS:
... this.valueOf(String) ... -- int
... this.longestPath() ... -- int

METHODS FOR FIELDS:
... this.left.valueOf(String) ... -- int
... this.left.longestPath() ... -- int

... this.right.valueOf(String) ... -- int

... this.right.longestPath() ... -- int

13

