Graph Algorithms (©2012 Felleisen, Proulx, et. al.

Final Project: Graph Algorithms

The Model
Graph

Your program needs to represent a graph with nodes that represent capitals
of the 48 US states. Each node has a name — the name of the state. For
each node, record the information about the capital of that state. Each edge
represents a bi-directional connection between two adjacent states. You
may consider the four corner states: Colorado Utah, Arizona and New Mexico as
connected to each other. Each edge has a value that represents the distance
between the capitals of the two states. The distances between two cities
are based on the geographic distance. (See a separate announcement for a
shortcut you can use to compute this distance.)

Algorithms

Your model should implement three graph traversal algorithms:

e Depth-First Search: uses a Stack to record the ToDo information
e Breadth-First Search: uses a Queue to record the ToDo information

e Shortest Path Search: uses a Priority Queue to record the ToDo infor-
mation

To implement the shortest path you need to represent a priority queue.

The detailed description of the algorithm appears in a separate docu-
ment. You will encounter a significant penalty for repeating the code - one
algorithm implementation should run all three variants, distinguishing be-
tween them by selecting the appropriate implementation of a common in-
terface for dealing with the ToDo information.

Using Libraries

Furthermore, throughout the project you are encouraged to leverage as
much as possible from the existing Java libraries (both the Java Collections
Framework, and the JPT libraries). The designer should focus on the design
of interfaces between tasks, between components, wrapper and adopter
class that allow you to use an existing library class in a customized setting.



(©2012 Felleisen, Proulx, et. al. Graph Algorithms

The View

The requirements

The view at the minimum should have the following functionality:

User should be able to see a graphical representation of the graph
with labels for the state capitals.

User should be able to select which of the three algorithms is to be
used for the subsequent task.

User should be able to specify the origin and the destination of the
desired path.

The user should be able to see the resulting path.

Animation and Effects

Of course, the view should be much more elaborate. Here is a list of possi-
ble enhancements (you should implement at least a couple of them):

Highlight the path in a different color in the graphics display.

Display the steps in the search by highlighting in a different color
the visited nodes, the fringe nodes (those currently in the queue or
the stack), the origin, the target, and the unseen nodes. Animate the
process using either the timer, or a user advance triggered by a key
press.

Animate the reconstruction of the path by traversing from the found
target back to the previous node, all the way up to the origin.

After the path has been found, traverse the path one step at a time
(on timer) and play a short tune for each state.

Select the origin and the target in a graphics display using a mouse.

Display in a GUI the path length and possibly the nodes along the
path. Or display the sequence of directions from one state to another
(e.g. Go West from MA to NY 130 miles).

Allow the user to select a map of Europe or other continent instead of
just the continental connected USA.



