
Lab 9 c©2011 Felleisen, Proulx, Chadwick, et. al.

Loops and Sorting

In the first part of the lab you will learn how to turn recursive loop-
functions into imperative (mutating) loop using Java’s while and for state-
ments.

In the second part we will look at using direct access of list elements to
implement a different kind of sorting algorithm.

9.1 Setup

For this lab download the files in Lab9.zip. The folder contains the following
files:

• Balloon.java: a class representing Baloons

• ISelect.java: an interface for generic predicates

• RedBallon.java and SmallBalloon.java: implement the
ISelect interface for the Balloons

• IList.java, MtList.java, and ConsList.java: define a
generic list that implements the Traversal interface

• ALTrav.java: implements a Traversal wrapper for the
ArrayLists

• Algorithms.java: shows an implementation of several algorithms
that consume Traversals

• Examples.java file that defines examples of all data and defines all
tests

• The ForEach.java: Implements a wrapper for three forms of Java
loops (recursion, while, and for).

Create a new Project Lab9 and import the files from the zip. Import the
tester.jar. Lookover the class definitions so you understand how they
work. We are particularly interested in the implementations of the
Traversal interface (i.e., IList classes and ALTrav).

1

Lab 9 c©2011 Felleisen, Proulx, Chadwick, et. al.

9.2 Converting Recursive Loops into while Loops

The goal of this part of the lab is to implement traversals over data within
an ArrayList using Java while and for loops. After completion make
sure you understand the role of each part of the loop definition: BASE
VALUE, CONTINUATION-PREDICATE, CURRENT, ADVANCE, UPDATE,
and know how to construct both the while loop and the for loop.

We will be working with the Loop Handout from the main Lab page,
but all the templates/discussions are also in the Algorithms.java file
(below the original implementations of contains and countSuch.

• First read the code for the contains and countSuchmethods (from
the Algorithms class). These methods have been designed in a re-
cursive style similar to functions as we implement them in Racket.

• We will look at examples of orMap (another name for contains, the
way we’ve implemented it) in the Algorithms class.

Read the template analysis for our recursive loop version that uses the
Traversal iterator. As we have done in lecture, we start by convert-
ing the recursive method into accumulator style: the accumulator re-
members information about what we have seen, and is updated for
recursive invocations.

Read the Template Analysis portion carefully and make sure you un-
derstand the meaning of all parts: BASE-VALUE,
TERMINATION/CONTINUATION-PREDICATE,
CURRENT-ELEMENT, UPDATE, and ADVANCE.

2

Lab 9 c©2011 Felleisen, Proulx, Chadwick, et. al.

// TEMPLATE ANALYSIS:
public <T> ReturnType methodName(Traversal<T> tr){

// +--------------------+
// Invoke the methodAcc: | acc <-- BASE-VALUE |
// +--------------------+
return methodNameAcc(tr, BASE-VALUE);

}

public <T> ReturnType methodNameAcc(Traversal<T> tr, ReturnType acc){

... tr.isEmpty()) ... -- boolean :: PREDICATE
if true:
... acc ... -- ReturnType :: BASE-VALUE

else:
+---------------+

...| tr.getFirst() | ... -- T :: CURRENT-ELEMENT
+---------------+

+-----------------------+
... | update(T, ReturnType) | -- ReturnType :: UPDATE

+-----------------------+
e.g.: update(tr.getFirst(), acc)

+--------------+
... | tr.getRest() | ... -- Traversal<T> :: ADVANCE

+--------------+
e.g.: methodNameAcc(tr.getRest(), update(tr.getFirst(), acc))

}

Based on this analysis, we can design a complete-template for solu-
tions to many different (but similar) problems with the solution divided
into three methods as follows:

// COMPLETED LOOP METHOD(S) TEMPLATE:
//***
public <T> ReturnType methodName(Traversal<T> tr){
// +--------------------+
// Invoke the Acc method: | acc <-- BASE-VALUE |
// +--------------------+
return methodNameAcc(tr, BASE-VALUE);

}

public <T> ReturnType methodNameAcc(Traversal<T> tr, ReturnType acc){
+---predicate--+

if(| tr.isEmpty() |)
+--------------+
return acc;

else
+----advance---+ +---update-using-current---+

return methodNameAcc(| tr.getRest() |,|update(tr.getFirst(), acc)|);
+--------------+ +--------------------------+

}

<T> ReturnType update(T t, ReturnType acc){
... Update Accumulator ...

}

3

Lab 9 c©2011 Felleisen, Proulx, Chadwick, et. al.

9.2.1 Understanding Different Loops

• Look at the first two variants of the orMap method: recursive defini-
tion and the variant that uses a while loop. Identify the four parts in
each definition (BASE-VALUE, TERMINATION/CONTINUATION-
PREDICATE, UPDATE, and ADVANCE).

Look at the tests in the Examples class to see how the methods are
used. After you understand how the while loop works compared to
the recursive version, move on...

• Design two versions of a filter method, which produces a new
ArrayList that contains all elements of the original list that satisfy
the given ISelect predicate.

Test your methods by producing all red balloons or all small balloons.

• Design and test two versions of the method andMap method, which
determines whether all elements of a given Traversal satisfy the
given ISelect predicate.

Test the methods by checking whether a list contains all red balloons
or all small balloons.

9.2.2 Converting while loops into for loops

Repeat the previous tasks with the two for loop variants: one that uses the
for loop with a Traversal, and one that uses a counted for loop with an
ArrayList.

A ForEach Abstraction

Take a look at the ultimate abstraction of these various accumulator-based
traversals in the ForEach class.

Read the tests for for each variant of the compute method from the
ForEach in Examples.java. Make sure you understand how the meth-
ods work, and how we’ve designed the OrSelectUpdater.

9.3 Selection Sort

Selection Sort is one of the more familiar sorting algorithms. It is well suited
for the situations when we try to minimize the movment (i.e., copying) of
data.

4

Lab 9 c©2011 Felleisen, Proulx, Chadwick, et. al.

9.3.1 The Algorithm

Lets try to sort an ArrayList of size S. Assume that the first K elements
in the list are sorted and are smaller than the rest of the elements (by a given
ordering). If the first K elements are sorted (and smaller), then we have
a partitioning of the list into two regions (sorted [0..K − 1], and unsorted
[K..size()]).

We want to sort the unsorted (obviously) region of the ArrayList, and
we know how to swap two items in the list. So, all we need to do is find the
location of the ”smallest” (for our defined comparison) and swap it with the
first unsorted item. The sorted region grows by one, the unsorted region
shrinks by one, and all our assumptions still hold.

If we repeat this until the last item is swapped into its correct position,
we will have finished sorting the remainder of the ArrayList.

9.3.2 The Idea

If it helps, think about how you might sort your favorite Basketball (or
Cricket, if you prefer) team by height. You grab the shortest player, and
move him (or her) all the way to the left of the group. Now (s)he is sorted
right?

Then you select the shortest of the remaining players and move him (or
her) to the front of the remaining group... right after the previously sorted
player. Now they’re both sorted right?

Repeat the selection process until we run out of ”unsorted” players.

9.3.3 A Small Example

We start in the middle:
>---- sorted -----< >------- unsorted ----------<
+----+----+----+----++----+----+----+----+----+----+
| 0 | 1 | 2 | 3 || 4 | 5 | 6 | 7 | 8 | 9 |
+----+----+----+----++----+----+----+----+----+----+
| 13 | 16 | 17 | 20 || 27 | 31 | 22 | 25 | 28 | 29 |
+----+----+----+----++----+----+----+----+----+----+

/\
minimum unsorted

5

Lab 9 c©2011 Felleisen, Proulx, Chadwick, et. al.

Swap elements at locations 4 and 6:
>-------- sorted ------< >----- unsorted -------<
+----+----+----+----+----++----+----+----+----+----+
| 0 | 1 | 2 | 3 | 4 || 5 | 6 | 7 | 8 | 9 |
+----+----+----+----+----++----+----+----+----+----+
| 13 | 16 | 17 | 20 | 22 || 31 | 27 | 25 | 28 | 29 |
+----+----+----+----+----++----+----+----+----+----+

/\
minimum unsorted

Swap elements at locations 5 and 7:
>--------- sorted ----------< >---- unsorted ---<
+----+----+----+----+----+----++----+----+----+----+
| 0 | 1 | 2 | 3 | 4 | 5 || 6 | 7 | 8 | 9 |
+----+----+----+----+----+----++----+----+----+----+
| 13 | 16 | 17 | 20 | 22 | 25 || 27 | 31 | 28 | 29 |
+----+----+----+----+----+----++----+----+----+----+

/\
minimum unsorted

Swap elements at locations 6 and 6... or optimize by skipping:
>----------- sorted -------------< >- unsorted -<
+----+----+----+----+----+----+----++----+----+----+
| 0 | 1 | 2 | 3 | 4 | 5 | 6 || 7 | 8 | 9 |
+----+----+----+----+----+----+----++----+----+----+
| 13 | 16 | 17 | 20 | 22 | 25 | 27 || 31 | 28 | 29 |
+----+----+----+----+----+----+----++----+----+----+

/\
minimum unsorted

What about the starting case when none of the ArrayList is sorted?
Well, then the sorted part has size 0, and the unsorted part starts at the
index 0, no big deal.

1. In the Algorithms class design the helper method findMinLoc
that finds the location of the smallest item in the unsorted part of the
given ArrayList using a given Comparator.

See java.util.Comparator documentation, and don’t forget to
import it:

http://download.oracle.com/javase/6/docs/api/java/util/Comparator.html

Note: Think carefully through the first step of the design recipe, to make
sure you know what the method consumes and what it produces.

2. In the Algorithms class design the method selectionSort that
implements the selection sort algorithm.

6

Lab 9 c©2011 Felleisen, Proulx, Chadwick, et. al.

3. Design two Comparators for the Balloons, the BalloonsBySize
that compares the balloons by their radius, and BalloonsByHeight
that compares them by their distance from the top of the scene (the y
value).

4. Test your sorting method and the helper method on lists of balloons
using each of the two Comparators.

7

