
Lab 8 c©2011 Felleisen, Proulx, Chadwick, et. al.

Traversals; Testing private Methods; Direct
Access Data Structures

In this lab we will practice abstracting over the type of data in a col-
lection, see how Java documentation presents classes and methods, look
at a couple of Java Collections Library classes, and work with the direct
(random) access data structure that we’ve seen in Lecture.

8.1 Writing JavaDocs; User-Defined Exceptions

In the last lab we took a look at documentation generated from the spe-
cial comments written in the JavaDoc language. Starting with this lab (i.e.,
on the next assignment) you should write all your purpose statments as
JavaDoc comments. Start by looking at how the comments are defined in
the tester library.

On the main lab page find the link to the documentation for the tester
package. You can see that the library consists of three interfaces, six regular
classes and two Exception classes. In the table there is a comment next
to each class, interface, and exception, and each name is a link to a more
detailed description.

Click on the link for the IllegalUseOfTraversalException
class. The tester library defines a new class of exception specific to sit-
uations that may be encountered. Typically programmers developing a
library will create special RuntimeException subclasses to signal special
errors, unless a standard exception (e.g., IllegalArgumentException)
suits their needs. The content of a class that extends RuntimeException
usually accepts a String message which is passed to the super construc-
tor, though you can customize (fields etc...) to provide more error informa-
tion.

We now look at where our IllegalUseOfTraversalException is
used/thrown. Follow the link to the Traversal interface. In the class list
(lower left frame) you’ll also notice that the names of interfaces are written
in italics.

Here is the code for the Traversal interface, notice the format of the
comments for each source element:

1

Lab 8 c©2011 Felleisen, Proulx, Chadwick, et. al.

package tester;

/**
* An interface that defines a functional iterator

* for traversing datasets

*
* @author Viera K. Proulx

* @since 30 May 2007

*/
public interface Traversal<T>{

/** Produce true if this

* {@link Traversal Traversal}

* represents an empty dataset

*
* @return true if the dataset is empty

*/
public boolean isEmpty();

/** Produce the first element in the dataset represented

* by this {@link Traversal Traversal}.

*
* <p>Throws <code>IllegalUseOfTraversalException</code>

* if the dataset is empty.</p>

*
* @return the first element if available -- otherwise

* throws <code>IllegalUseOfTraversalException</code>

*/
public T getFirst();

/** Produce a {@link Traversal Traversal}

* for the rest of the dataset

*
* <p>Throws <code>IllegalUseOfTraversalException</code>

* if the dataset is empty.</p>

*
* @return the {@link Traversal Traversal}

* for the rest of this dataset if available - otherwise

* throws <code>IllegalUseOfTraversalException</code>

*/
public Traversal<T> getRest();

}

Each element of a Java file (class, interface, signature/header, method) can
be preceeded by a multiline comment that begins with ”/**” (note the

2

Lab 8 c©2011 Felleisen, Proulx, Chadwick, et. al.

double star) and ends normally with ”*/”. Everything in the comment
makes up the purpose statment for the element that follows.

You can use this example as a guide for writing your own JavaDoc com-
ments, but see:

http://www.oracle.com/technetwork/java/javase/documentation/index-jsp-135444.html

for more technical information and examples of different @ keywords/uses.

8.2 Annotations and main Methods

Java annotations can also be used to leverage the tester without the need
for you to put all of your test cases within a single Examples class. An-
notations in Java (and other languages such as C#), allow programmers to
include meta-data to describe a given element (e.g., class, method, or vari-
able).

The tester provides two kinds of annotations that clients/programmers
can use on their classes and methods: @Example and @TestMethod. Us-
ing these annotations is quite simple.

@Example
public class NumExamples{

public NumExamples(){}

@TestMethod
public void numberSanity(Tester t){

t.checkExpect(5, 5);
t.checkFail(10, 5);
t.checkExpect(5 + 5, 10);

}
}

When the tester is run via tester.Main the it searches for any classes
that have the @Example annotation and examines them for methods with
the @TestMethod annotation and runs them as tests accordingly. Using
annotations gives us the flexibility necessary to test private fields and
methods by writing test cases within our respective classes.

import tester.*;

/** Represents a non-empty list */
@Example
public class ConsLo<T> implements ILo<T>{

/** The first item of this list */
private T first;

3

Lab 8 c©2011 Felleisen, Proulx, Chadwick, et. al.

/** The rest of this list */
private ILo<T> rest;

/** The full constructor

* @param first The first item of this list

* @param rest The rest of this list

*/
public ConsLo(T first, ILo<T> rest) {

this.first = first;
this.rest = rest;

}

/** Produce a list, adding the given item to this list

* @param t the given object

*/
public ILo<T> add(T t) {

return new ConsLo<T>(t, this);
}

@TestMethod
/** EFFECT: Test the constructor and the add

* method for this class */
private void testFirstAndRest(Tester t){

// Setup
ConsLo<Integer> cons =

new ConsLo<Integer>(5, new MtLo<Integer>());
ConsLo<Integer> cons2 = cons.add(8);

// Tests
t.checkExpect(cons.first, 5);
t.checkExpect(cons2.first, 8);
t.checkExpect(cons.rest, new MtLo<Integer>());
t.checkExpect(cons2.rest, cons);

}
}

When we have multiple classes with test cases, we do not always wish
to run our test cases all at once every time we run our project. In these
scenarios, it becomes acceptable to use a main method to run individual
Example classes with the tester.

public static void main(String[] args){
// This will run with normal reporting enabled
Tester.run(new ConsExamples());
// This will run with verbose reporting enabled

4

Lab 8 c©2011 Felleisen, Proulx, Chadwick, et. al.

Tester.runFullReport(new ConsExamples());
}

The main method must be defined in a public class. You can invoke the main
method of a class in a number of different ways. In Eclipse it is easiest to
right-click on the defining class and select
Run As > Java Application. You can also go through the Run menu:
Run > Run As > Java Application. If the option does not exist then
either your class is not public, or the main signature does not match.

See the tester documentation for more information on difference be-
tween run and runFullReport methods.

8.3 Implementing Traversals

Create a new project in Eclipse called Lab8. Add an interface, ISelector,
similar to what we’ve used for predicate function-classes. Don’t forget to
add the tester library to the project’s build-path. Something like this
should work:

/** Represents a predicate for the data of any type */
interface ISelector<T>{

/** Returns <code>true</code> if this predicate

* holds for the given item

*
* @param t The given item

*/
public boolean pick(T t);

}

In the past we have designed interface/classes to represent recursively con-
structed lists of arbitrary items, but in order to add new functionality we
had to modify each of our interfaces/classes. This works well when we
are the only developer/user of our classes, but if we want to distribute our
program as a library, we need to provide methods that allow the clients to
later manipulate data in the list from the outside.

The Traversal interface we saw in lecture was specifically designed
for this purpose, so we can design the classes that represent lists of data,
and add the methods needed to implement the Traversal interface. This
way, methods defined outside of our list classes (and interface) can also
have access to the list data.

Add the Lists.java file from the main lab page to your project. These
definitions should look familiar (remember the lecture notes?).

5

Lab 8 c©2011 Felleisen, Proulx, Chadwick, et. al.

It doesn’t look like we’ve achieved much, but we can now define meth-
ods that manupulate items in the list (like filter) from outside our list
classes. When we build such classes/libraries there is no way to provide
all the methods that clients will need, so instead we can provide a clean
interface to allow clients access to the data.

As an example (like in Lecture) we can place these kinds of methods in
a separate class we call Algorithms. Add the Algorithms.java file/-
class to your project and make examples of lists of Strings. Design a
few test cases for filter; you do not have to completely test the method,
but make sure you understand what is going on and how methods in the
Algorithms class can be used.

Java Collections Framework

Go to the web site for Java libraries at:
http://java.sun.com/javase/6/docs/api/.

Scroll through the All Classes in the lower left frame to find the
Comparable and Comparator interfaces. You can see from the descrip-
tions that there is a lot of detail, much more than we would expect from
such a simple function-object. We will address some of these issues in the
lectures.

ArrayList

Scroll through the All Classes frame on the left again and find the
ArrayList class. In lecture we discussed a number of methods we can
use to modify/manupulate and instance of ArrayList. Use the online
documentation, lecture notes, or your steel-trap of a memory as you work
on this last part of the lab.

8.4 Direct Access Data Structures with Mutation

For this part of the lab download the Balloons.zip, which contains the
following files:

• Balloon.java: a sample data class representing Balloons.

• TopThree.java will be used to practice working with ArrayList in
imperative style (using mutation).

• The Examples.java file that defines examples of all data and defines all
tests.

6

Lab 8 c©2011 Felleisen, Proulx, Chadwick, et. al.

Create a new Project Lab8ArrayLists and import these files. Don’t forget
to add the tester library too. In this part of the lab we will work with
ArrayLists of Balloons.

Here are some of the important methods defined in the ArrayList<E>
class. See the JavaDoc for their purpose statments:

boolean isEmpty();
int size();
boolean add(E obj);
E get(int index);
E set(int index, E obj);

8.5 Using the ArrayList class

Note that in order to use an ArrayList we have added

import java.util.*;

To the beginning of our file(s).

1. The class TopThree now stores the values of the three elements in an
ArrayList. Complete the definition of the reorder method. Have
a close look at the documentation for the ArrayList and Comparator
to decide which methods you should use.

2. In the Examples class, design the method isSmallerThanIndex
that determines whether the radius of the Balloon at the given po-
sition (index) in the given ArrayList of Balloons is smaller than
the given int limit.

3. Design the method isSameAsIndex that determines whether the
balloon at the given position in the given ArrayList of Balloons
has the same size and location as the given Balloon.

4. Design the method inflateAtIndex that increases the radius of a
Balloon at the given index by 5. For this you should also design a
helper method... where do you think it should be?

5. Design the method swapAtIndices that swaps the elements of the
given ArrayList at the two given positions (indices). Make sure
that this method works for any ArrayList... it should be parametrized
as we did in Lecture.

7

Lab 8 c©2011 Felleisen, Proulx, Chadwick, et. al.

Note 1: We have used the words position in the ArrayList and index in
the ArrayList interchangeably. Both are commonly used, so we want to
make sure you are comfortable with to both ways of describing locations of
elements in an ArrayList.

Note 2: Of course, the tests for these methods will also appear in the
Examples class. Make sure that every test can be run independently of all
other tests. To do this, you must initialize (reset) the data at the begining
of your test method, then evaluate the test by invoking the appropriate
check method. Just to be safe, you may also reset the data after the tests
are complete.

Note: Finish this lab and include your work in your portfolio.

8.6 Generating Javadocs

If you have time left, convert the purpose statements for your homework
classes into Javadoc comments and generate web pages of your documen-
tation. Under the Project menu select Generate Javadoc and then se-
lect the files that should be used to generate the documentation (likely your
entire project). By convention we typically generate JavaDoc files into a di-
rectory named docs at the same level as the src directory. Be sure to fix
any warnings and problems with the generation.

8

