
Lab 6 c©2011 Felleisen, Proulx, Chadwick, et. al.

Mutating Object State and Implementing
Equality

6.1 Mutating Object State

Goals

Today we touch the void... (sounds creepy right... see the movie, or read the
book, to understand how scary the void can be).

We will focus on the following topics:

• Designing methods that modify (for real) the state of an object

• Designing tests for effectful methods

• Java RuntimeExceptions

• Designing methods that define equality

The Problem

For this Lab we will work with bank accounts again. For our purposes
we have savings accounts, which must maintain a positive balance, check-
ing accounts, which require a minimum balance (not zero), and credit lines,
which records the balance currently owed and the maximum the customer
can borrow. The bank has a list of Accounts where a customer may de-
posit or withdraw money. A withdraw from an account cannot reduce the
balance below the minimum, and, for credit lines, cause the balance owed
to be above the maximum limit. When a customer deposits money to an
account, the balance increases, though for a credit line this decreases the
amount owed, which cannot drop below zero.

6.1.1 Methods that effect a simple state change

1. Create a Project for this Lab and unzip the files from Lab6.zip, from
the main lab page.

1



Lab 6 c©2011 Felleisen, Proulx, Chadwick, et. al.

2. Make examples of Checking, Savings, and Credit accounts.
We’ve started you off with two of them using a different organiza-
tion than you are used to. We use a reset() method to initialize
the examples, rather than initializing them in place. Follow the same
organization with your examples... more on that later.

3. Discuss several scenarios of making deposits and withdrawals with
you partner for each type of account. Make sure you understand
when the transaction cannot be completed (i.e., is invalid).

4. Add the method withdraw to the Account class and implement it
in each subclass:

// EFFECT: Withdraw the given amount
// Return the new balance
abstract int withdraw(int amount);

When doing so we encounter a few questions:

• Question: How do we signal that the transaction cannot be com-
pleted?
Answer: throw a new RuntimeException similar to the fol-
lowing:

throw new RuntimeException("Over credit limit");

Make the message meaningful for your class. You may add some
information about the account that caused the problem, the cus-
tomer name, or the current balance available.

• Question: How do we test that the method throws the expected
exception?
Answer: Suppose the method invocation:

this.check1.withdraw(1000)

should throw a RuntimeException with the message: "1000
is not available". Our test for this exception would then
be:

t.checkException("Testing withdraw checking",
new RuntimeException("1000 is not available"),
this.check1,
"withdraw",
1000);

2



Lab 6 c©2011 Felleisen, Proulx, Chadwick, et. al.

The first argument is a String that describes what we are test-
ing — it is optional and can be left out. The second argument
gives the Exception our method invocation should throw (the
messages must match exactly). The third argument is the in-
stance that invokes the method, the fourth argument is the
method name. After that we list as many arguments as the
method consumes, separated by commas.

• Question: How do we test the correct method behavior when the
transaction goes through?
Answer: We look at the purpose and effect statements. Because
the method produces a value as well an effect (changes the state
of the object), we must test both aspects.
We first define instances and add them to our reset method.
We use the reset method to initialize our data since the exam-
ples may change during each test.

// Test the withdraw method(s)
void testWithdraw(Tester t){

reset();
t.checkExpect(check1.withdraw(25), 75);
t.checkExpect(check1, new Checking(1, 75,

"First Checking Account", 20));
reset();

}

Notice that we use the reset method twice. At the start we
make sure that the data we use has the correct values before the
tests are invoked, and after the test(s) we reset the data to the
original values (since we always need to reset before testing, we
can leave the second reset off, though later we may to different
tasks before and after testing).
In this case there are two tests we have to perform: the first is
what we have done in the past — comparing the value produced
by the method with the expected value. The second test verifies
that the state of the object did indeed change as expected.
Try the following incorrect implementations of the withdraw
method in the Checking class to see why all this testing is nec-
essary:

3



Lab 6 c©2011 Felleisen, Proulx, Chadwick, et. al.

// Missing Effect...
int withdraw(int amount){

return this.balance - amount;
}

// Wrong return value...
int withdraw(int amount){

this.balance = this.balance - amount;
return amount;

}

// Correct, but no exception!
int withdraw(int amount){

this.balance = this.balance - amount;
return this.balance;

}

Of course, we need to implement and test the method in each
Account class: the Savings and Credit classes as well.

5. Add the method deposit to the Account class and implement it in
all subclasses. Remember, what happens in the Credit case when
the balance would become negative (no more debt)?

// EFFECT: Deposit the given funds into this account
// Return the new balance
abstract int deposit(int funds);

Make sure your tests are defined carefully as before.

6.1.2 Methods that change the state of structured data

The Bank class keeps track of all accounts.

1. Design the method openAcct to Bank that allow the customer to
open a new account in the bank.

// EFFECT: Add a new account to this Bank
void add(Account acct){ ... }

Make sure you design your tests carefully.

2. Design the method deposit that deposits the given amount to the
account with the given name and account number. Make sure you

4



Lab 6 c©2011 Felleisen, Proulx, Chadwick, et. al.

take exception to any problems, e.g., no such account, or a transaction
that cannot be completed.

Make sure to design your tests carefully.

3. Design the method withdraw that withdraws the given amount
from the account with the given account number. Make sure you take
exception to any problems, e.g., no such account, or a transaction that
cannot be completed.

Make sure to design your tests carefully.

4. Design the method removeAccount that will remove the account
with the given account number from the list of accounts in this Bank.

// EFFECT: Remove the given account from this Bank
void removeAccount(int acctNo){ ... }

Hint: Throw an exception if the account is not found, and follow the De-
sign Recipe!

6.2 Understanding Equality

Note: This material is covered in pages 321 - 330 in the textbook. Read it
carefully.

Our object is to define a method that will determine whether a given
Account is the same as this account. We may need such a method to find
a desired account within the Bank.

Of course, now that we have the abstract class it would be easy to com-
pare just account number and the name on the account, but we want to
make sure that all the customer’s data matches what we have on file ex-
actly, including balances, interest rates, etc.

6.2.1 Implementing same

We will design a same method similar to that described in the second part
of the lecture, Equality by safe casting. The relevant examples can be found
in the lecture notes. You may want to look at the code there as you work
through this problem.

1. Begin by designing the method same for the Account class.

5



Lab 6 c©2011 Felleisen, Proulx, Chadwick, et. al.

2. Make examples that compare all kinds of accounts: of the same kind
(e.g., Checking vs. Checking) and of different kinds (e.g., Savings
vs. Credit). For the accounts of the same kind you should test
both true and false cases. Comparing different kinds of accounts
should always produce false.

3. Now that you have sufficient examples, follow with the design of
the same method in one of the concrete account classes (for example
the Checking class). Write the template and think of what data and
methods are available.

4. As in lecture, you need two different helper methods: one that deter-
mines whether the given account is a Checking/Savings/Credit
account, and one that converts this account into the desired type. De-
sign the methods isChecking, isSavings, and isCredit, that
determine whether this account is a checking/savings/credit
account, respectively.

5. Design the methods toChecking, toSavings, and toCredit, that
convert this account into a checking/savings/credit account, respec-
tively. Header and purpose for the checking account case:

// Convert this Account into a Checking
abstract Checking toChecking();

In the Checking class the body will be just

// Produce a checking account from this account
Checking toChecking(){

return this;
}

While the others should throw a RuntimeException with the ap-
propriate message.

6. Now we can define the body of the same method in the Checking
class:

// Is the given Account the same as this?
boolean same(Account that){

if(that.isChecking()){
return this.sameChecking(that.toChecking());

}else{
return false;

}
}

6



Lab 6 c©2011 Felleisen, Proulx, Chadwick, et. al.

7. We still need the method sameChecking but this only needs to be
defined within Checking, and can be defined with private (or
protected) visibility.

8. Complete the design of the same methods (including
sameChecking, sameSavings, sameCredit) for the other two ac-
count classes.

6.2.2 Alternative approaches: bad and good

Bad Option - Incorrect alternative:
The method above can be incorrectly written with two features of the

Java language: the instanceof operator and casting. In the Checking
class this style method would look like the following:

// Is the given Account the same as this Checking?
boolean same(Account that){

if(that instanceof Checking){
return this.sameChecking((Checking)that);

}else{
return false;

}
}

However, this version introduces bugs!

The issue is that any class that later extends Checking, say a
PremiumChecking class, will also be considered a Checking instance by
the instanceof operator.

If we implement a similar same method in PremiumChecking:

// Is the given Account the same as this PremiumChecking?
boolean same(Account that){

if(that instanceof PremiumChecking){
return this.samePremChecking((PremiumChecking)that);

}else{
return false;

}
}

Then now only PremiumChecking objects can be the same as other
PremiumChecking instances,

But Checking instances can be the same as PremiumChecking in-
stances!!

7



Lab 6 c©2011 Felleisen, Proulx, Chadwick, et. al.

These kinds of bugs can cause serious problems. This issue is also illus-
trated in the example file BadSame.java from the lab main page. You can
add the file to your project and run the example, but we have included the
tester output for illustration.

Good Option - A Correct alternative:
In lecture we introduced another version that also works. It requires us

to add a new method to the abstract class for each subclass of Account.
For our IShape hierarchy, the methods were:

// Is that Circle the same as this Shape?
public boolean sameCirc(Circ that);
// Is that Rect the same as this Shape?
public boolean sameRect(Rect that);
// Is that Combo the same as this Shape?
public boolean sameCombo(Combo that);

This technique is popular in object-oriented languages like Java and is
known as double dispatch (or callbacks).

8


