
Lab 5 c©2011 Felleisen, Proulx, Chadwick, et. al.

Understanding Constructors; Function Objects

5.1 Standard Java

Goals

Starting with this lab we will use standard Java, though we only know
a small part of the language. We will learn new features when they are
needed to support our program design process, but we will only use the
parts of the language we have introduced in the lectures.

Visibility modifiers

The first new feature of Java we need introduces is visibility modifiers. In
Java every class, interface, field, method declaration, and method defini-
tion/header can start with public, private, or protected: public el-
ements are visible in all other classes (the same way we fields and methods
are used in FunJava); private elements can only be accessed within their
defining class; and protected elements are visible in the defining class
and it’s subclasses.

If the visibility modifier is omitted, elements are visible to all classes
within the same package. In our projects, all classes are defined in the same
(default) package, so we only add visibility modifiers when it serves a pur-
pose:

• Interface methods are implicitly public. When a class implements
an interface and its methods, each one must be public since the im-
plementing class cannot reduce their visibility.

• If a (possibly abstract) class defines a method, then any class that
extends it also cannot reduce the visibility of the method. E.g., if the
super class defines the method as public, all subclasses must also
define it as public.

• We will discuss protected visibility more later, but fields are gener-
ally declared protected to hide implementation details from unre-
lated classes.

1

Lab 5 c©2011 Felleisen, Proulx, Chadwick, et. al.

File organization

A standard Java Project differs little from what we’ve seen. The difference
is that every public class and interface must be declared in a separate
file whose name is the same as the class or interface, with an extension of
".java". For example, if our project contained public Book, Author,
and ExamplesBooks classes, then we would need to define these classes
in files Book.java, Author.java, and ExamplesBooks.java, respec-
tively. Typically, each Project contains all files that are used to solve one
problem.

Note: As long as they are not public, we can define several classes/inter-
faces in the same file, just like we did in FunJava (though you can fix the
errors from interface methods now).

Projects and Run Configurations

If you haven’t been already, from now on you should set up a new Eclipse
Project for each lab, assignment, or portfolio. Create a Project named Lab-05
and add a new file, Date.java, to the default package (in the src direc-
tory).

• Copy the following data definition into your Date.java file. Feel
free to make the class public.

// to represent a calendar date
class Date{

int year;
int month;
int day;

Date(int year, int month, int day){
this.year = year;
this.month = month;
this.day = day;

}
}

• Define an examples class called DateExamples, add the usual con-
structor, and define three examples of valid dates.

• Get the tester.jar and add it as an External Jar.

2

Lab 5 c©2011 Felleisen, Proulx, Chadwick, et. al.

• Create a new Run Configuration with tester.Main as the main class,
and DateExamples entered in the Arguments tab. Note that the ar-
gument is the name of the class, not of the file.

• Select Apply and/or Run.

• Next time you want to run the same project, make sure Date.java is
shown in the main pane, then hit the green circle with the white tri-
angle, or press Ctrl F11.

5.2 Understanding Constructors

Assuring Data Integrity

The data definitions at times do not capture the meaning of data and the
restrictions on what values can be used to initialize different fields. For
example, if we have a class that represents a date in the calendar using
three integers for the day, month, and year, we know that our program is
interested only in some years (maybe between the years 1500 and 2500),
the month must be between 1 and 12, and the day must be between 1 and
31 (though there are additional restrictions on the day, depending on the
month and whether we are in a leap year).

Suppose we Date examples:

// Good dates
Date d20100228 = new Date(2010, 2, 28); // Feb 28, 2010
Date d20091012 = new Date(2009, 10, 12);// Oct 12, 2009

// Bad date
Date dn303323 = new Date(-30, 33, 23);

Of course, the third example is just nonsense. While complete validation of
dates (months, leap-years, etc...) is a course of material itself, for the pur-
poses of practicing constructors, we will simply make sure that the month
is between 1 and 12, the day is between 1 and 31, and the year is between
1500 and 50000 (we’re thinking ahead!).

Did you notice the repetition in the description of validity? It suggests
we start with a few helper methods (pre-abstraction if you will...):

• method validNumber that consumes a number and the low and
high bound and returns true if the number is within the bounds
(inclusive).

3

Lab 5 c©2011 Felleisen, Proulx, Chadwick, et. al.

• methods validDay, validMonth, and validYear designed in a
similar manner.

Quickly design these methods. they’re pretty easy, but if you must, de-
sign at least one; you can finish the others at home... Friday night. For
testing purposes, have the methods you skipped return true for now. (We
call such temporary method definitions stubs.)

Once you’re done, change the Date constructor to the following:
Date(int year, int month, int day){

if(this.validYear(year))
this.year = year;

else
throw new IllegalArgumentException("Invalid year");

if(this.validMonth(month))
this.month = month;

else
throw new IllegalArgumentException("Invalid month");

if(this.validDay(day))
this.day = day;

else
throw new IllegalArgumentException("Invalid day");

}

This is the same as the Time class we saw in lecture. To signal an error or
some other exceptional condition, we throw an instance of
RuntimeException, of which IllegalArgumentException is a sub-
class.

If the program ever executes a statement like:
throw new ...Exception("... message ...");

then Java raises the constructed exception/error. For our purposes now,
this is as good as terminating the program and printing the message string.

The tester library provides methods to test constructors that should throw
exceptions:

boolean t.checkConstructorException(Exception e,
String className,
... constr args ...);

For example, the following test case verifies that our constructor throws the
correct exception with the expected message, if the supplied year is 53000:

4

Lab 5 c©2011 Felleisen, Proulx, Chadwick, et. al.

t.checkConstructorException(
new IllegalArgumentException("Invalid year"),
"Date", 53000, 12, 30);

Run your program with this test. Now change the test by providing an
incorrect message, incorrect exception (e.g. NoSuchElementException),
or by supplying arguments that do not cause an error, and see that the
test(s) fail.

Java provides the class RuntimeException with a number of sub-
classes that can be used to signal different types of dynamic errors. Later
we will learn how to handle errors and design new subclasses of
RuntimeException to signal errors specific to our programs.

Overloading Constructors: Providing Defaults.

When entering dates for the current year it is tedious to continually en-
ter 2011. We can provide an additional constructor that only requires the
month and day, assuming the year should be 2011.

Remembering the single point of control rule, we make sure that the new
overloaded constructor defers all of the work to the primary full constructor:

Date(int month, int day){
this(2011, month, day);

}

Add examples that use only the month and day to see that the constructor
works properly. Include tests with invalid month or year as well.

Overloading Constructors: Expanding Options.

The user may want to enter the date in the form: "Oct 20 2010". To
make this possible, we can add another constructor:

Date(String month, int day, int year){
...

}

Our first task is to convert a String that represents a month into a number.
We can do it in a helper method getMonthNo:

// Convert a three letter month into the numeric value
int getMonthNo(String month){

if(month.equals("Jan")){ return 1; }
else{ if (month.equals("Feb")){ return 2; }

5

Lab 5 c©2011 Felleisen, Proulx, Chadwick, et. al.

else{ if (month.equals("Mar")){ return 3; }
else{ if (month.equals("Apr")){ return 4; }

...
else

throw new IllegalArgumentException("Invalid month");
}

Our constructor can then invoke this method as follows:

Date(String month, int day, int year){
// Invoke the prinmary constructor, with a valid month
this(year, 1, day);

// Change the month to the given one
this.month = this.getMonthNo(month);

}

Complete the implementation, and check that it works correctly.

5.3 Abstracting with Function Objects

Download the files in Lab5.zip. The folder contains the files ImageFile.java,
ISelectImageFile.java, SmallImageFile.java, IListImageFile.java, MTListImageFile.java,
ConsListImageFile.java, and ExamplesImageFile.java.

Starting with partially defined classes and examples will give you the
opportunity to focus on the new material and eliminate typing in what
you already know. However, make sure you understand how the class is
defined, what does the data represent, and how the examples were con-
structed.

Create a new Project Lab5-sp11 and import into it all of the given files.
Also import tester.jar.

Introduction - Tutorial

We start by designing three familiar methods that deal with lists of files:
filterSmallerThan40000, filterNamesShorterThan4,
and countSmallerThan40000.

Look at the first two methods. They should only differ in the body of
the conditional in the class ConsListImage. The two versions look like
this:

if (this.first.size() < 40000)
if (this.first.name.length() < 4)

6

Lab 5 c©2011 Felleisen, Proulx, Chadwick, et. al.

Both represent a boolean expression that depends only on the value of
this.first. Think about the filter loop function in DrRacket. Its contract
and header were:

;; filter: (X -> boolean) [Listof X] -> [Listof X]
;; to construct a list from all those items
;; in alox for which p holds
(define (filter p alox)...)

The argument p was a function/predicate that consumed an item from
the list (for example the first) and produced a boolean value that indicated
whether the item is acceptable.

Java does not allow us to use functions or methods as arguments. To
get around this problem we need to go through several steps:

• Define an interface that contains as its only method the header for the
desired predicate: the interface ISelectImageFile:

// to represent a predicate for ImageFile-s
public interface ISelectImageFile{

// Return true if the given ImageFile
// should be selected
public boolean select(ImageFile f);

}

• Now any class that implements this interface will have this predicate
method. Suppose our filtermethod consumes an object of the type
ISelectImageFile as follows:

// produce a list of ImageFiles from this list
// that satisfy the given predicate
public filter(ISelectImageFile pick);

Inside the method filter our template now includes

... pick.select(ImageFile) ... -- boolean

and so, we can replace the two conditionals by

if (pick.select(this.first))

• We now need to define a class that implements this interface. It needs
to define the method select that consumes an instance of ImageFile
and returns true if the size of the given object is less than 40000. The
following class definition accomplishes this task:

7

Lab 5 c©2011 Felleisen, Proulx, Chadwick, et. al.

/* Select image files smaller than 40000 */
public class SmallImageFile implements ISelectImageFile {

/* Return true if the given ImageFile is smaller than 40000 */
public boolean select(ImageFile f) {

return f.height * f.width < 40000;
}

}

• In the Examples class we can now invoke the filter method on
an IListImageFile with an instance of SmallImageFile as the
argument:

IListImageFile mtImagelist = new MTListImageFile();
IListImageFile imagelist =
IListImageFile smallImagelist = ...

ISelectImageFile smallFiles = new SmallImageFile();

// test the method filter on small image files
boolean testFilter(Tester t){

return
t.checkExpect(mtImagelist.filter(this.smallFiles),

this.mtImagelist) &&
t.checkExpect(imageList.filter(this.smallFiles),

this.smallImagelist);
}

The conditional inside the filter method:

if (pick.select(this.first))

will select the ImageFile objects for which the size is smaller than
40000.

5.3.1 Practice

We will now practice the use of function objects. The only purpose for defin-
ing the class SmallImageFile is to implement one method that deter-
mines whether the given ImageFile object has the desired property (a
predicate method). An instance of this class can then be used as an argu-
ment to a method that deals with ImageFiles.

1. Start with defining in the ExamplesImageFile class the missing
tests for the class SmallImageFile.

8

Lab 5 c©2011 Felleisen, Proulx, Chadwick, et. al.

2. Design the method allSmallerThan40000 that determines whether
all items in a list are smaller that 40000 pixels. The method should
take an instance of the class SmallImageFile as an argument.

3. We now want to determine whether the name in the given ImageFile
object is shorter than 4. Design the class NameShorterThan4 that
implements the ISelectImageFile interface with an appropriate
predicate method.

Make sure in the class ExamplesImageFile you define an instance
of this class and test the method.

4. Design the method allNamesShorterThan4 that determines whether
all items in a list have a name that is shorter than 4 characters. The
method should take an instance of the class NameShorterThan4 as
an argument.

5. Design the method allSuchImageFile that that determines whether
all items in a list satisfy the predicate defined by the select method
of a given instance of the type ISelectImageFile. Note: This resem-
bles the andmap function in DrRacket. In the
ExamplesImageFile class test this method by abstracting over the
method allSmallerThan40000 and the method
allNamesShorterThan4.

6. Design the class GivenKind that implements the
ISelectImageFile interface with a method that produces true
for all ImageFiles that are of the given kind. The desired kind is
given as a parameter to the constructor, and so is specified when a
new instance of the class GivenKind is created.

Hint: Add a field to represent the desired kind to the class
GivenKind.

7. In the ExamplesImageFile class use the method allSuch and the
class GivenKind to determine whether all files in a list are jpg files.
This should be written as a test case for the method
allSuchImageFile.

Do it again, but now ask about the giff files.

8. If you have some time left, design the method filterImageFile
that produces a list of all ImageFiles that satisfy the

9

Lab 5 c©2011 Felleisen, Proulx, Chadwick, et. al.

ISelectImageFile predicate. Test it with as many of your pred-
icates as you can.

9. Follow the same steps as above to design the method
anySuchImageFile that that determines whether there is an item
a list that satisfies the predicate defined by the select method of a
given instance of the type ISelectImageFile.

10. Finish the work at home and save it in your portfolio.

Food for thought: Think how this program would be different if we
have instead worked with lists of Books, or lists of Shapes.

10

