
Lab 4 c©2011 Felleisen, Proulx, Chadwick, et. al.

Methods and Data Abstraction

Matthew (one of your friendly TAs) has discovered a fantastic setting
that we can use for our run configuration so it works for any source file.
Edit your Eclipse run configuration, in the Arguments tab enter:

"${selected resource loc}"

Instead of the src file name. Now Eclipse will use FunJava to “run” the
file/editor that you have selected.

4.1 Methods for Complex Hierarchies

Grab the Employees.java file and add it to your (or an) Eclipse project.
Study the class diagram, the class definitions and the examples. Take a
piece of paper and draw out the relationships of the examples. We call
these classes mutually recursive, much like the XExprs from last semester.

Complete the following problems. Make sure you update your tem-
plates as you implement various helper methods... things can get awfully
complicated!

1. Design the method countSubs that computes the total number of
subordinates of this Emp.

2. Design the method fullUnit that computes/collects all the subor-
dinates of this Emp. Hint: you’ll need to add a method to append a
given ILoE to this ILoE.

3. Design the method hasPeon that determines if this Emp has a subor-
dinate of the given name (String).

4.2 Abstracting over Data Definitions.

Designing Methods... Again.

As a simplification, imagine that a file on your computer can either be an
ImageFile, TextFile, or AudioFile. Each class of data has a name and
the owner, but there is additional information for each kind of file.

1



Lab 4 c©2011 Felleisen, Proulx, Chadwick, et. al.

Download Files.java from the lab main page and work through the
following problems.

1. Add an example of each of the three classes and add tests for the size
method we’ve given you.

Design the following methods:

2. Design the method downloadTime that determines how many sec-
onds it takes to download this file at a given download rate, in bytes-
per-second.

3. Design the method sameOwner that determines whether the owner
of this file is the same as the owner of the given file.

Abstracting Fields and Methods, and Methods

Look at the methods you’ve written and identify the places where your
implementations are similar, and (wait for it...) abstract!!.

1. Lift the common fields to an abstract class AFile. Include a con-
structor in the abstract class and change the constructors in the sub-
classes accordingly (remember super(...)?). After your refactoring
the tests should run/pass exactly as before.

For each method defined in the three concrete classes decide which category
it belongs in:

2. The implementations in the sub-classes are all different. For this case de-
clare the method as abstract in the abstract class.

3. The implementations in the sub-classes are all the same. For this case you
can implement the method completely in the abstract class. Other
implementations can be removed.

4. The implementations in the sub-classes are the same for some, but not all.
For this case you can move the common implementation into the ab-
stract class, and override the the methods in the classes that require
different implementation(s).

Move the methods that can be lifted (abstracted) and make sure all tests pass.
Note: You can only lift the sameOwner method if you modify its contract.
Do so, and adjust the types of your examples so that your tests have no
compile errors.

2



Lab 4 c©2011 Felleisen, Proulx, Chadwick, et. al.

4.3 A Bit of World Fun

Finally we do some interactive programming. Grab the Follow.java file
from the lab page. For this problem you’ll need to add the
JavaWorld-3.jar (Note the “3”) library to your project and place it in
your EclipseJars directory. See Lab 3 for directions and other links to
set this up.

4.3.1 Simple Game

Your task is to create a little “game”, where a little Circle (or Star... or
be creative) follows a little target around the screen. When the target is
reached motion stops. When the mouse is clicked the target is moved to
where the click took place and motion begins again.

You need to design three methods: toDraw, onTick, and onMouse,
with the signatures and purpose statements given in a comment. Be sure
to design the methods, including examples and tests, before you code the
method bodies. If methods get too complicated then design helpers where
needed. Make your Scene 400 by 400.

To help you out, the JavaWorld library includes placeImage method
that accepts a Posn, in addition to the one that takes ints:

// Place an Image on this Scene at the given Posn
Scene placeImage(Image i, Posn p);

// Place an Image on this Scene at the given X/Y
Scene placeImage(Image i, int x, int y);

We’ve also given you a CartPt class that extends Posn. Feel free to add
any helper methods needed to this class, and since every CartPt is also a
Posn, they can still be passed to placeImage.

4.3.2 Multiple Followers

Now that you’ve got the simple game working, make the following (no
pun intended) additions.

1. Design an interface (and classes) to represent a list of CartPts. As
usual, call them ILoCP, MtLoCP, and ConsLoCP.

2. Design a method called place that places a dot (Circle, Star, or
something special) in the given Scene for each CartPt in this list.
Hint: think of the given Scene as an accumulator.

3



Lab 4 c©2011 Felleisen, Proulx, Chadwick, et. al.

3. Design a method moveToward that returns a new list with each
CartPt in the list moved toward the given CartPt. Note: if you
were good about the design of your helper methods this is a piece of
cake.

4. Modify your Follow class (the world) to have a list of locations
(CartPts) instead of just one. Note that there’s still only one target.

You’ll need to update your onDraw, onTick, onMousemethods, and
your template, assuming you change this.loc to be this.locs.
Feel free to start with the MtLoCP... we’ll make it interesting in a
second.

5. Finally, design an onKey method with the following signature:

// Create a random List when a key is released
Follow onKey(String ke);

In your method, test the key-event (ke): if it is the string "release"
create a new Followwith a random list of locations, otherwise return
this Follow unchanged.

To create a random ILoCP, put the following methods in your
Follow class. Study it so you understand... it’s just natural-number
recursion, but notice how we create random integers.

// Create a random integer
int rand(){

return new java.util.Random().nextInt(400);
}
// Create a list of random CartPts
ILoCP random(int len){

if(len == 0){
return new MtLoCP();

}else{
return new ConsLoCP(new CartPt(this.rand(),

this.rand()),
this.random(len - 1));

}
}

4


