
Lab 2 c©2011 Felleisen, Proulx, Chadwick, et. al.

Designing Classes with FunJava

1 Data Definitions and Setup

In this lab we will focus on the use of SVN, Eclipse, and the creation of
data definitions and examples in a class based object-oriented language
(like Java, but not quite).

We will work in a “professional” Integrated Development Environment
(IDE) (Eclipse) using a language library called FunJava.

1.1 Homework Submission and SVN

You should have logged in using your CCIS credentials. If not, then shame
on your Lab leader!

Open your web browser to the following web page for information on
how to access your Unix/Linux directories. (likely not necessary, if you
trust us)

http://howto.ccs.neu.edu/howto/accounts-homedirs/home-
directory-access-on-linux-and-windows/

Navigate your way to the Z: drive. If you can’t find “Computer” on the
desktop, then double-click the Recycle Bin and click on Computer in
the left pane, then double-click the network drive myhome ... (Z:).

You should see the various directories and files that make up your Unix
home directory. Right-click on the classes directory and select SVN
Checkout... from the pop-up menu.

Visit this page for a quick discussion of HW Handin:
http://www.ccs.neu.edu/course/cs2510/Assignments/

Handin/

From there you should be able to locate your HW partern’s information,
and the number of your pair. Back to the checkout... for the URL of the
repository, enter:

1

Lab 2 c©2011 Felleisen, Proulx, Chadwick, et. al.

https://trac.ccs.neu.edu/svn/cs2510s11/pairXXX

where XXX is your pair number from the HW submission page. For the
Checkout directory, enter:

Z:\classes\CS2510-Workspace

Or name it something you like better. Click OK. It should ask you for your
CCIS username and password. Once you enter those a and it’s finished,
click OK, then navigate into the classes directory. You should be able to
see your new SVN workspace directory!

Create another directory in classes where you will keep all library
(JAR) files, call it EclipseJars. For the rest of the Lab/term we will refer to
these two directories as EclipseWorkspace and EclipseJars. Keep the file/ex-
plorer window open, we’ll be using it later in the Lab.

1.2 Eclipse IDE and FunJava

Eclipse includes an editor and allows you to organize your work into many
files that together make up a project. It has an “incremental” compiler that
so you can edit and run your programs while getting relatively fast error
feedback. Your Eclipse workspace can contain many projects, so you should
be able to keep all your work in one workspace, with one project for each
assignment or lab.

Setting up your workspace

Start Eclipse. It should ask you where you want your workspace to be...
so enter (or click Browse and navigate to) the workspace directory you
created (saw that coming). Feel free to check the “Use this as the default...”
box. Click OK.

Once Eclipse starts, close the annoying Welcome screen if it comes up.

Zeroth things First

There’s a few settings we need to get out of the way before you start.
If/when you work from your own computer you’ll have to adjust these
settings too, otherwise the graders might be angry... and you wouldn’t like
them when they’re angry.

Select Preferences under the Window menu and change the follow-
ing settings. You should also be able to follow along with your friendly Lab

2

Lab 2 c©2011 Felleisen, Proulx, Chadwick, et. al.

Leader.

1. Type “tab” in the search box at the upper-left to minimize the avail-
able selections.

2. Select “Text Editors” on the left. Make sure the “Insert
spaces for tabs” check-box is checked.

3. Select “Formatter” on the left. Click the “Edit...” button,
then choose the “Indentation” tab at the top. Change the
“Tab policy” to “Spaces only”.

4. When you say OK it will force you to create a name for the profile...
you can just say “Mine” or some other cool name.

Great... now let’s get on to Java-like programming!

Create a new project, and Check it into SVN

• Select New > Java Project from the File menu. Enter the name
“last-Lab-02” but replace “last” with your last name. Under
Project layout make sure the Create separate folders for sources and
class files radio button is selected, then click Finish.

• Your project should show up in the Package Explorer on the left (feel
free to cheer at this point).

We will be submitting HWs via SVN through the Trac repository
workspace that you just setup.

Go back to your file/explorer window, and enter your workspace folder
Your project directory should be visible... right-click on it and select
TortoiseSVN > Add.... If you want you can uncheck some of the
weird entries, then click OK, then click OK again, when the action com-
pletes.

Right-click the project directory again and select SVN Commit.... En-
ter a message like “First checkin”, then click OK. In general the msage
should be meaningful, so that your partner can tell what you were doing
when you changed things. After the action completes you now have all
you need to submit assignments!

See the HW Handin link off the course webpage for more information
and details on HW submission and organization.

3

Lab 2 c©2011 Felleisen, Proulx, Chadwick, et. al.

A Java-like Experience

1. Now that you’re an Eclipse and SVN expert, grab the library (JAR)
we need for this Lab from the lab’s index page.

FunJava-1.jar

Save it in your EclipseJars directory . The JAR provides output and
testing functionality you saw in lecture and a tool for restricting the
language a bit, for now. The “-1” in the name is there because we
will be updating (hopefully improving) the library throughout the
semester, so the number will increase as we release changes.

Right-click on your project directory in the Package Explorer pane and
select Build Path > Add External Archives.... Navigate
to your EclipseJars directory and select your FunJava.jar.

2. Add the Shapes.java file to your project

• Download the file Shapes.java form the lab index page and
save it into the src directory within your project directory, in
your new workspace. Then right click on your project in the Pack-
age Explorer and select Refresh. You can also select the project
and hit F5.

• Alternatively, you can save it to a temporary directory and im-
port it using
File > Import.... Select the General tab, File System,
and click Next. Browse to your temporary directory, select it,
and find your file. Make sure you put it into your project src
directory.

3. Set up a FunJava run configuration

• Highlight your project in the in the Package Explorer pane.

• In the Run menu select Run Configurations.... In the left pane
select Java Application.

• In the upper left corner click on the leftmost item (the icon with
the plus in the corner). When you mouse over it should show
New launch configuration.

• Make up a name for this configuration - usually the same as the
name of your project, lab, or assignment.

4

Lab 2 c©2011 Felleisen, Proulx, Chadwick, et. al.

• The Project field should be your current project (e.g.,
chadwick-Lab-02), and in the Main class field enter FunJava.

• Click on the tab (x)= Arguments. In the Program arguments
text field enter “src/Shapes.java”. Make sure to enclose it in
quotes. Later, when you define your own program, you will use
a different (but just as meaningful) file name that corresponds to
the file/assignment you’re working on.

• At the bottom of the Run Configurations select Apply then Run.

You should see a few messages in the Console, and a display of the
Examples class with the example instance(s).

If the program does not run and reports that it cannot find java or
javac, open your Run Configuration and click on the tab
Environment then select New and enter the following information:

• Name: PATH

• Value: C:\Program Files\Java\jdk1.6.0 23\bin, which
is the location of the Java Compiler on the Lab machines, though
at home yours will likely be different.

Then click OK and try running again.

4. View, Edit, and rerun Shapes.java

• Unfold the default package under the src directory under
your project in the Package Explorer.

• You should see Shapes.java; double-click it, and the file
should open into an editing tab in the main pane.

• Add new examples of Circle and Rect to the Examples class.
Make sure there are no errors or warnings.

• Now run the file again. make sure Shapes.java is shown in
the main pane, then hit the green circle with the white triangle in
the top toolbar. You can also click and select your configuration
for the drop-down menu to the right of the Run button.

2 Practice with FunJava

Remember all the Rockets we launched (and landed) last semester? Here’s
a Racket data definition for a simple Rocket:

5

Lab 2 c©2011 Felleisen, Proulx, Chadwick, et. al.

;; A Rocket is: (make-rocket String Number Boolean)
(define-struct rocket (name height landing?))

;; Example Rockets:
(define r1 (make-rocket "Apollo 11" 150 false))
(define r2 (make-rocket "Gemini 3" 25 true))

1. Draw the class diagram for this data definition

2. Create a new file in your Eclipse Lab project named Rocket.java
and convert the data definition/class diagram into a FunJava class
definition.

3. Create an Examples class, and include instances of Rockets. See
Shapes.java for the necessary format(s).

4. Create a new Run Configuration and run the examples.

2.1 Classes containing classes

Rather than just keeping track of the height of a Rocket, we might also
need it’s horizontal coordinate. Let’s use a Posn to keep track of both.
Of course posn is built into DrRacket, so the following is mostly just for
illustration.

;; A Posn is: (make-posn Number Number)
(define-struct posn (x y))

;; Example Posns:
(define p1 (make-posn -30 150))
(define p2 (make-posn 50 25))

;; A Rocket is: (make-rocket String Posn Boolean)
(define-struct rocket (name loc landing?))

;; Example Rockets:
(define r1 (make-rocket "Apollo 11" p1 false))
(define r2 (make-rocket "Gemini 3" p2 true))

1. Draw the class diagram for these data definitions

2. Add the Posn class to your file and modify the Rocket class (and
constructor) to match the Racket definitions.

6

Lab 2 c©2011 Felleisen, Proulx, Chadwick, et. al.

3. Create examples of Posns and adjust your Rocket Examples accord-
ingly.

4. Run the examples to make sure everything is correct.

2.2 Unions of Classes (of data)

The class of data that represents Rockets is not as interesting as it could
be. For instance, the rocket that lifts the space shuttle is very different than
the one that took Buzz to the moon. And a toy rocket might have a price
associated, whereas you probably don’t want to know how much the space
shuttle rockets cost (especially if you pay taxes).

Create an interface to represent various kinds of rockets... call it
IRocket (and so do you). The data class of IRocket will be made up of
three different FunJava classes... feel free to embellish as you see fit.

• SelfFlying which includes the location and the version number of the
auto-pilot software.

• DualEngine which includes the location, the power of each engine,
and the name of the pilot.

• Toy which includes only the max-height and price of the rocket.

Notice that the names are distinct from your other classes... you can use
the same java file, just include new examples in your Examples class

1. Draw a class diagram for the class hierarchy that represents these
three types of Rockets

2. Design data definitions (i.e., classes) for each of the definitions (in-
cluding the interface)

3. Add examples of each kind of IRocket to your Examples class. Be
sure to use IRocket as the type of the example fields.

2.3 Self-Referential Class Hierarchies

Remember the Russian-Dolls example from last semester? Brings back
fond memories of recursion doesn’t it? Let’s re-live a little... here’s some-
thing like the definitions we had last semester:

7

Lab 2 c©2011 Felleisen, Proulx, Chadwick, et. al.

;; An IDoll is one of:
;; - ’solid
;; - (make-doll IDoll)
(define-struct doll (inner))

;; Example IDolls:
(define d1 (make-doll ’solid))
(define d2 (make-doll (make-doll (make-doll ’solid))))

• Draw the class diagram for IDolls and the related structures. Hint:
rather than using a symbol, use a class without any fields.

• Transform the diagram into class definitions

• Make examples of IDoll and add them to your Examples class. Use
references to earlier fields (e.g., this.doll1) to build your dolls.

3 Wrapping up, checking in

Last, but not least, save your file(s), and add them to SVN. Right click on
the file and choose TortoiseSVN > Add.... When you’re done select
Commit for the entire workspace directory.

8

