Lab 10 (©2011 Felleisen, Proulx, Chadwick, et. al.

Hashcode, Equality, Maps, and Graphs

Goals

In the first part of this lab we will learn how to define the equals and
hashCode methods, and how to use the HashMap data structure from the
Java Collections Framework.

In the second part we will start working on Graph Traversal algorithms,
leveraging our knowledge of the Java libraries. You will finish this problem
as a part of your programming assignment.

10.1 HashMap and JUnit

Ultimately, the goal of this part of the lab is to learn to use a professional
test harness JUnit. It is completely separate from application code and is de-
signed not only to report the cases when a result differs from an expected
value, but also to report any exceptions the program would/should throw.
The disadvantage of JUnit is that it uses Java equals methods to compare
results, which by default only check for instance identity. In order to effec-
tively use JUnit for testing we need to override equals correctly.

As discussed in lecture, each time we override the equals method we
must make sure that the hashCode method is also overridden in a com-
patible way. That means if two instances are equal under our definition of
equals then the hashCode method for both instances must produce the
same value.

We start by learning to use HashMap class, then see how we can over-
ride the necessary hashCode method. Finally, we also override equals to
implement an equality comparison that best suits our needs.

Part 1: Using HashMap

Our goal is to design a program that will display the locations of the cap-
itals of all 48 contiguous US states (on a map) and show us how we can
travel between the cities.

Lab 10 (©2011 Felleisen, Proulx, Chadwick, et. al.

The problem traveling between cities can be abstracted to the problem
of finding a path in a "network” of nodes connected with links — known in
combinatorial mathematics as graph traversal problems. You have already
seen some parts (Citys) of this problem in earlier assignments.

The Data

To provide real examples of data the provided code includes the (partly
complete) definitions of City and State classes.

1.

Download the files in Labl10-HashCode. zip and create a new
project.

The Java files contain an implementation of the Traversal interface
by InFileCityTraversal that allows you to read a file of City
data. The code in the Examples class loads the city data generated
by an InFileCityTraversal into an ArrayList<City>.

Run the code with some of the city data files (caps . txt,
minicities.txt,smallcities.txt).

. The Examples class contains data for three New England states (ME,

VT, MA) and their capitals. Add the data for the remaining three
states: CT, NH, RI. Initialize the lists of neighboring states for each of
these, but do not include the neighbors outside of the New England
region.

Finally, we look at defining a toString method in both the City
and State classes. Object defines a default implementation, but it
is of little use (it prints the Object’s class name and integer ID).

Inspect the implementations of toString for City and State.
Comment the method out (or just rename it) and rerun the tests...
what happens?

Note: In the future (i.e., for HWs) you should implement a toString
method for each class you create. Make the result readable so the
tields are clearly destinguished.

We now have all the data we need to proceed with learning about
hashCode, equals, and JUnit.

Lab 10 (©2011 Felleisen, Proulx, Chadwick, et. al.

Using a HashMap

The class USMap contains only one field and a constructor. The field is
defined as:

HashMap<City, State> states;

The HashMap is defined to store the values of the type State, each corre-
sponding to a unique key, an instance of a City (its capital).

Note: In reality this would not be a good choice of keys for a HashMap — we
do it to illustrate the issues that may come up.

1. Go to Java documentation and read what is says about HashMap. The
two methods you will use the most are put and get.

2. Define the method initMap in the class Examples that will add the
six New England states to a given HashMap (see put).

3. Test the effect by verifying the size of a HashMap and by checking
that it contains at least three of the items you have added. Consult
Javadocs to find the methods that allow you to inspect the contents
and the size of the HashMap.

Understanding HashMap

We will now experiment with HashMap to understand how changes in the
equals method and the hashCode method affect its behavior.

1. Define a new City instance boston? initialized with the same val-
ues as the original boston. Now put the state MA into the table again
using boston?2 as the key. The size of the HashMap should now be 7.

2. Now define an equals method in the class City that compares the
City name, state, zip. As we breifly discussed in lecture, start the

method with:
public boolean equals (Object o) {
City c = (City)o;

}
If the given object is of the type that cannot be cast to City at runtime,
the cast will throw a ClassCastException.

Now run the same experiment as above (adding MA with boston2).
The resulting HashMap still has size 7: even though the two cities are
equal, they still produce different hash codes.

3

Lab 10 (©2011 Felleisen, Proulx, Chadwick, et. al.

3. Now hide the equals method (comment it out or rename it) and
define a hashCode method that produces an integer that is the sum
of the hash codes of all the fields in City class (ignoring latitude
and longitude).

Now run the experiment again. The resulting HashMap again has
size seven. Even though the two cities produce the same hashCode,
the HashMap thinks that they are not the same values.

4. Un-hide the equals method so that two City objects that we con-
sider to be equal produce the same hash code.

When you run the experiment again you will see that the size of the
HashMap remains the same after we inserted Massachusetts with the
boston2 key.

Note: Read "Effective Java” for a detailed tutorial on overriding equals
and hashCode.

Part 2: Introducing JUnit

You will now rewrite all your tests using the JUunit4. In the File menu
select New then JUnitTestCase and give your test class a name. The tests
for each of the test methods will then become methods similar like:

/#** Testing City toString =/
public void testToString() {

assertEquals (new City (3301, "Concord", "NH", 71.527734, 43.218525)
.toString(),
"new City (03301, Concord, NH, 71.527734, 43.218525)");
assertEquals (new City (4330, "Augusta", "ME", 69.766548, 44.323228)
.toString(),

"new City (04330, Augusta, ME, 69.766548, 44.323228)");
}
We see that assertEquals calls are basically the same as the test methods
for our tester library. Right click on the test class and select Run As,
JUnit Test.
Try to see what happens when some of the tests fail, when a test throws
an exception, and finally, make sure that in the end all tests succeed.

e Add a method that determines whether the city is South of the given
latitude. Add and run tests using your JUnit test class.

e Add a method that determines whether this city is in the same state
as the given city. Run the tests using your JUnit test class.

Lab 10 (©2011 Felleisen, Proulx, Chadwick, et. al.

Ask for help and try things out — make sure you can use JUnit, so you will
not run into problems when completing the assignment and your final project.

Warning

Try to get as much as possible during the lab. Ask questions when you do
not understand something. The first part of the next assignment asks you to
hand in a complete solution to the next part of this lab.

10.2 Stacks, Queues, Priority Queues, LinkedLists, and Vectors

Look up the documentation for the following Java classes and interfaces:
Stack, Queue,PriorityQueue,List,LinkedList,and Vector. Iden-
tify which of them represent interfaces, which represent abstract classes,
and which provide concrete implementations you can use in your pro-
grams.

Stacks and Queues: Finding a Path

The goal of this exercise is to use the Java libraries to do the work for us. We
want to compute a path from one city to another, in a graph that represents
the 48 contiguous US states. Start a new project GraphAlgorithms. You will
be able to reuse some of what you have done before for the problems that
refered to the US cities, but we are starting anew with more effective use of
the Java libraries and a better organization of the data.

Download Labl0-Graphs.zip into a new project and run the tests.
To help you focus on the interesting parts, we have given you the following
classes:

1. City that represents a capital of a state. It includes the location given
as latitude and longitude, as well as methods that compute the loca-
tion of the city on a Scene of size 400x400.

2. State that represent a state. Its fields are the name of the state (the
two letter abbreviation, the capital City and an ArrayList of the
names of the neighboring states.

3. USMap that represents the whole graph - the 48 US capitals and the
connections to the neighboring states. This class already has the code
that will initialize it with the necessary data.

Lab 10 (©2011 Felleisen, Proulx, Chadwick, et. al.

1. Start by looking at the representation of the graph of the US. It rep-
resents the graph of states as a HashMap<String, State>, that
makes it very easy to find a state and its neighbors.

Note: (this is not important) The method makeStates uses a differ-
ent technique for initializing an entire ArrayList to the given list of
data. You do not need to understand how it is done. At some later
time you may want to trace through JavaDocs to understand how this
is accomplished,

2. In looking for a path from one city to another we keep track of the
visited States. For each state we visit we also remember the state we
came from and the distance we have traveled so far. Design a class
FromTo that will represent this information. Because all information
about the capitals of all states is already recorded in the class USMap,
you only need to record the names of the states. However, include the
distance we have traveled from the origin, not the distance between
the two states represented.

3. We now start defining the classes we will need to implement the
Graph Traversal Algorithms. We need to keep track of the USMap, the
visited states, and a To-Do-List of states to visit. We start with the
visited states:

Define the class Path that keeps track of the visited states using a
HashMap. Use the visited state’s name as the Key and the instance of
your FromTo class as the Value. So, for example, we may have the
following information about states and traveling between them:

MA - visited first: came from "", distance 0
NY - we came from MA, distance 130

NH - we came from MA, distance 60

VT - we came from NH, distance 60 + 70

NJ - we came from NY, distance 130 + 100

PA - we came from NJ, distance 130 + 100 + 90

Make sure you include the above example in your tests. (The dis-
tances you get may be different from the ones we gave you — the
given classes implement the computation of distances and your pro-
gram should use it.

The class Path should have a constructor that consumes the String
that is the name of the origin and adds the first item to its record of
visited states. This first FromTo object should have the origin set to
the empty St ring, the distance set to 0, and the destination to be the
given origin.

Lab 10 (©2011 Felleisen, Proulx, Chadwick, et. al.

4. Inthe class Path design the method fromToDist that consumes two
Strings that represent the beginning and ending states for one leg of
the journey, and the instance of the USMap and produces the distance
between them.

5. Inthe class Path design the method add that consumes two Strings
that represent the beginning and ending states for one leg of the jour-
ney, and the instance of the UsMap and adds to the Path the appro-
priate FromTo object: using the ending state as the key, and adding
the current distance to the distance we already traveled to get to the
beginning state.

6. In the class Path design the method pathTo that produces an
ArrayList of FromTo-s we need to go through to get to the given
City. So, for the above example, we would expect the following

results:
pathTo (MA) --> [MA distance 0]
pathTo (NY) --> [MA distance 0;
NY distance 130]
pathTo (PA) —--> [MA distance 0;

NY distance 0 + 130;
NJ distance 0 + 130 + 100;
PA distance 0 + 130 + 100 + 90]

7. In the class Path design the method contains that determines
whether the state given as St ringis in this Path.

8. In the class Path design the method directionsFromTo that con-
sumes the state of origin and our desired destination (as two
Strings) and produces the travel directions as a St ring. For exam-

ple,
directions ("MA", "MA") produces:
"from MA go to traveling a total of 0 miles"
directionso ("MA", "PA") produces:

"from MA go to traveling a total of 0 miles

from MA go to NY traveling a total of 130 miles
from NY go to NJ traveling a total of 230 miles
from NJ go to PA traveling a total of 320 miles"

We now want to keep track of the neighbors of the states we plan to
visit soon (the ToDo checklist). So, for example, if we visit Ma, we will
add to the ToDo checklist all of its neighboring states. However, there
are some restrictions. We do not add a neighbor to the checklist if it
is already in the Path.

Lab 10 (©2011 Felleisen, Proulx, Chadwick, et. al.

The interface ToDo describes the desired behavior:

interface ToDo{
/#+% Add a new neighbor to the ToDo checklist
* @param state the state whose neighbors we should add
* @param path the path that has been already traveled
*/
public void add(String state, Path path);

/#*% Remove a state from the ToDo checklist

* throw an exception 1f the checklist is empty
* (@return next state to be visited
*/

public String remove () ;

/++ Is this ToDo list empty?
* @return true if there are no more states to visit
*/

public boolean isEmpty () ;

9. Define the class ToDoStack that keeps track of the neighbors to visit
soon that uses the Java Stack class to implement the ToDo interface
as a stack.

10. Define the class ToDoQueue that keeps track of the neighbors to visit
soon that uses the Java LinkedList class to implement the ToDo
interface as a queue.

The ground work you have done here provides all the parts you need
for implementing two different graph traversal algortihms Breadth-First
Search and Depth-First Search. You will finish this work in the assignment
for this week.

