
Assignment 8 c©2011 Felleisen, Proulx, Chadwick, et. al.

Binary Search, Binary Search Trees, and
Visitors

Due: 3/15/2011 10:00pm

Portfolio Problems

Problem

In a class Algorithms design a more general version of the binary search
algorithm shown in lectures. It should consume an instance of
java.util.List, a java.util.Comparator, and an element of the list
to be found, and returns the index of the element in the list. See the follow-
ing web pages for necessary documentation:

http://download.oracle.com/javase/6/docs/api/java/util/List.html

http://download.oracle.com/javase/6/docs/api/java/util/Comparator.html

Because the Algorithms class operates on the List as a client (from the
outside), your method should be parametrized by the type of elements in
the list. If the given element is found your method should produce its index
in the list. Remember that the data in the list must be sorted. If the element
is not found, you should throw a RuntimeException.

In your examples, use instances of ArrayList to test your algorithm.
Choose any type of data (e.g., Strings, Integers, etc.) to test your
method and try it out with several versions of Comparator. Be sure to test
that your method also throws the correct exception.

Pair Programming Assignment

8.1 Problem: Abstractions

Work out Exercises 34.11 through 34.15 from the textbook. Create a new
project for these problems named Assignment-08-1 in your pair’s repos-
itory. Make sure your java files are in the src folder of the project.

1



Assignment 8 c©2011 Felleisen, Proulx, Chadwick, et. al.

For the drawing portion of the problems, use the JavaWorld library in-
stead of the idraw/drawmentioned in the problems and extend VoidWorld
for problem 34.15.

8.2 Problem: Traversals and Visitors

Start with the code given in the BSTs.zip file. You should have the follow-
ing files:

• Book.java: a class that represents books, and includes two imple-
mentations of Comparator<Book>.

• ABST.java: an abstract class that represents a generic/parametrized
binary search tree.

• Leaf.java: a class that represents a Leaf of a BST.

• Node.java: a class that represents a Node of a BST.

• Examples.java: contains several examples of BSTs and some tests.

• ABSTVisitor.java: an interface that represents a parametrized
Visitor for generic BSTs allows us to define functions over BSTs with-
out modifying the ABST, Leaf, and Node classes.

Create a new project for this problem named Assignment-08-2 in your
pair’s repository. Make sure your java files are in the src folder of the
project.

8.2.1 Problem: Traversals and Visitors

In this problem you will work with the Traversal interface (provided by
the tester library) and see both its advantages and its shortcomings.

1. Run tester.Main for your project. Don’t worry about the failing
tests for now. Build additional examples of Book BSTs using compar-
ison by price and/or title.

2. Add new tests the examples you have defined.

3. The Node class incorrectly implements the getFirst and getRest
methods from the Traversal interface. Design the correct imple-
mentations for these methods so that all the tests pass.

2



Assignment 8 c©2011 Felleisen, Proulx, Chadwick, et. al.

4. In the Algorithms class design the method totalPrice that com-
putes the total price of all the Books in the given Traversal.

5. In the Algorithms class design the method makeString that pro-
duces a String representation of all data in the given Traversal.
You may add separators (i.e., commas, new lines, or semicolons) be-
tween the individual data items to make them easy to read.

8.2.2 Visitors

The Traversal interface is good if we want to walk through the elements
of a data structure in some order (in this case specified by a Comparator)
but we loose information about the organization of the data. For instance,
we cannot design a method that computes structure specific values (e.g.,
the height of a tree) using Traversal interface.

Visitors are an object-oriented mechanism to allow functions to be im-
plemented from outside of a class hierarchy, while providing access to the
organization of the data. It is known as the Visitor Pattern, and we imple-
ment it for a class hierarchy by implementing an accept method for each
class that invokes the corresponding method defined in the Visitor interface
passing its fields (similar to our double-dispatch trick for implementing
equality).

The programmer can implement new Visitors to add functionality over
a class hierarchy that has been provided as a library. Each class that imple-
ments the Visitor interface represents the implementation of a new function
for this class hierarchy. The ABSTVisitor.java file provides the Visitor
interface for ABSTs and an example implementation of the countNodes
function through the class CountNodes.

1. Look at the ABSTVisitor interface and at CountNodes class. Add
additional tests in the Examples class for your new examples de-
fined earlier.

2. Design the class ComputeHeight that implements the
ABSTVisitor interface by defining methods that compute the
height of a binary search tree. Hint: use CountNodes as a guide, and
see HtDP for a description of BST height.

3. Design the class Contains that implements the ABSTVisitor inter-
face by defining methods that determine whether the given element

3



Assignment 8 c©2011 Felleisen, Proulx, Chadwick, et. al.

(a field of the class) matches any of the data items in a binary search
tree.

Hint: Each ABST already has something that can tell you whether or
not two data elements are the same (or otherwise ordered).

4


