
Assignment 7 c©2011 Felleisen, Proulx, Chadwick, et. al.

Abstracting Over Datatypes

Due: 3/08/2011 10:00pm

Portfolio Problems

1. Finish Lab 7 and include all the work in your portfolio.

Pair Programming Assignment

7.1 Problem

This problem is written in the style of a lab tutorial. The goal is to help you
understand how to design a more general (generic) programs by defining
common behavior and structured data using parametrized data types (such
as those for lists and/or binary trees).

Begin by downloading Assignment7.zip and building a project that con-
tains all these files and the most recent version of the Tester Jar
(tester.jar). Your project should have the following files:

• BookBST.java

• AcctBST.java

1. Each file represents a complete program that deals with binary search
trees. Set up two run-configurations, one for each of them, and run
the programs.

2. In Eclipse, Window menu > New Window will open a new window.
Set up a new Eclipse window and make sure it is in the Java Perspective
by selecting Window menu > Open Perspective > Java.
Open the two files in the two windows, full size, side by side, and
observe the differences and similarities.

1



Assignment 7 c©2011 Felleisen, Proulx, Chadwick, et. al.

3. Copy the file AcctBST.java and add it to the project with the name
BST.java. We now have two copies of class and interface definitions.

Comment out or delete the class definition for Acct from the new
copy, BST.java. The one defined in the original file will be used
instead.

4. Now replace Acct with <T> in all places that define classes or inter-
faces. So,

• ABSTAcct becomes ABST<T>

• LeafAcct becomes Leaf<T>

• NodeAcct becomes Node<T>

• ICompAcct becomes IComp<T>

Rename the AcctBSTExamples class to BSTExamples.

5. What else needs to be done? In the classes ABST, Leaf, and Node, in
every place where we refer to Acct replace this with T.

6. We are almost done. Look at what still needs to be done. How will we
deal with the similarities between the definitions of ICompAcct and
ICompBook? Figure out how to abstract these interfaces with your
partner.

7. To complete the abstraction make the necessary changes in the
BSTExamples class. Here we need to specify what type of data
each binary search tree will contain. So, the type ABSTAcct becomes
ABST<Acct> indicating that we are dealing with the abstract class
ABST, with the type argument (parameter) of Acct. Finish the
changes so there are no errors or warnings. Run the tests to be sure
they pass.

8. Copy the data definitions and tests from the BookBSTExamples
class, make the necessary changes as above, and run these tests. Make
sure they pass.

7.2 Problem

Download the file Expressions.java. It includes the implementation and
some sample tests of classes that represent arithmetic expression with inte-
ger values and binary addition.

2



Assignment 7 c©2011 Felleisen, Proulx, Chadwick, et. al.

1. Study the class diagram for this class hierarchy. Extend the classes so
we can also represent multiplication expressions. Hint: add the class
Times.

2. Design the method asString that produces a String representa-
tion of this expression with binary expressions in parentheses. De-
fine examples that represent the following expressions and include
tests that verify they are correctly converted to Strings:

(2 + (3 + 4))
((3 + 5) * ((2 * 3) + 5))

3. We now want to represent expressions that compare two integer val-
ues (producing a boolean value) and boolean operators like and and
or that combine two boolean values (producing a boolean value). We
do this safely by parametrizing each expression over the kind of value
it produces when it is evaluated.

• The IExp interface becomes parametrized over the type of value
it represents when evaluated.

• The BinOp class needs to be parametrized over the type of
operands it receives (assume they must be the same type), as
well as the type of value it produces when evaluated.

Make these changes and convert the rest of the hierarchy to use the
new parametrized definitions.

4. Add/modify the necessary class/interface definitions so we can rep-
resent Integer and Boolean values, and relational, boolean, and
arithmetic operators. To keep things simple, we limit our choices to
greater-than (>) and equal-to (==). We also want to represent boolean
expressions, and as well as or. Extend your asString method to all
the necessary classes/interfaces.

Make sure you have examples for each of them, as well as tests for
the eval method for each case.

5. Now design two new classes IntVar and BoolVar that will repre-
sent a variable (of the appropriate type) with a String representing
its name (e.g., "x", "width", etc.). Have each class implement the
appropriote IExp<...> interface.

3



Assignment 7 c©2011 Felleisen, Proulx, Chadwick, et. al.

The classes require an eval method, but the implementation should
throw an exception, indicating that the variable is undefined.

6. Design the method noVars for the expression class hierarchy that
determins whether or not this expression contains no variables. Hint:
think about the different cases, and structural recursion.

7. Design the methods substInt and substBool for the expression
class hierarchy that produce a new IExp by replacing variable occur-
rences (of the correct type: IntVar/BoolVar) that match the given
String with the given Value instance. Throw an exception if there
is an attempt to substitute a Boolean value for a matching variable
that represents an Integer, and vice versa.

Hint: the signatures look something like: substInt(String var,
Value<Integer> val). The special cases are in the IntVar and
BoolVar classes. Others are mostly structural recursion.

7.3 Problem

Rewrite your ChickenWorld game in the imperative style. For this you will
need the most recent version of the JavaWorld library, which includes a
class VoidWorld with void methods for most of the world interactions.
Review the documentation and examples, available from the links on the
assignment page.

You should meet with your TA and go over your previous game. Look
over what your partner’s group (if different) did, and decide which features
to include. Think about the comments from the graders, and have fun.
Don’t forget to Test!.

4


