
Assignment 6 c©2011 Felleisen, Proulx, Chadwick, et. al.

Circular Data; State Change

Due: 2/22/2011 10:00pm

Warning: Start this problem set early, and read it carefully! (you’ve been
warned!)

Portfolio Problems

Designing Mutable Lists

Start a new project for this portfolio and import the files from Lists.zip
available from the assignment page. You should have three files:
Node.java, LoS.java, and LinkedListExamples.java.

In the last lab we used a wrapper class (Bank) to implement a muta-
ble list of accounts. This is because we cannot simply change an empty
list into a nonempty list (it’s just not possible). The example files show a
similar technique to maintaining a mutable list, but instead of replacing the
original list with a new list in our wrapper, we directly change the struc-
ture of the list (inserting or removing elements) by modifying/mutating
the Nodes involved.

The LoS and Node classes represent a collection of Strings organized
as a list. Instead of having two different classes for the empty list and for
nonempty list, we have a class that represents a Node in a list (similar to
our Cons class that contained the data and a link to the next item), and a
subclass that represents the end of the list (a sentinel). An LoS list always
contains one Node. If the list is empty, the Node is our special sentinel node.

The following pictures illustrate the structure of an empty linked list and
a linked list after we added three Strings, ”abc”, ”def”, and ”ghi”:

1

Assignment 6 c©2011 Felleisen, Proulx, Chadwick, et. al.

+------+
| LoS |
+------+ +----------+
| node |->| Sentinel |
+------+ +----------+

| "" |
| null |
+----------+

+------+
| LoS |
+------+ +-------+ +-------+ +-------+ +----------+
| node |->| Node | +->| Node | +->| Node | +->| Sentinel |
+------+ +-------+ | +-------+ | +-------+ | +----------+

| "abc" | | | "def" | | | "ghi" | | | "" |
| next |-+ | next |-+ | next |-+ | null |
+-------+ +-------+ +-------+ +----------+

1. Study the code and classes. Make sure you understand what is going
on. Add an example to each test method defined in the
LinkedListExamples class.

2. Add tests for the methods that are not tested.

3. Design the method removeNode for the LoS class that removes the
Node that contains given String.

4. Design the method size that counts the number of nodes in a list
(LoS), not including the sentinel node.

Pair Programming Assignment

Submission and Project Management

From now on, make a separate project for every problem assigned. Save
the first problem (project) in a directory named Assignment-06-1 (with
a src directory), the second problem in Assignment-06-2, etc.

6.1 Problem

In this problem we will model a university registrar system.

1. Start a Java project (i.e., Assignment-06-1 and define the classes
and interfaces that implement the class diagram shown. Notice, that
we will need to break the circularity of this class diagram.

2

Assignment 6 c©2011 Felleisen, Proulx, Chadwick, et. al.

+---+
| +-------------------+ |
| | | |
| v | v
| +------+ | +------+
| | ALoS |<-------------+ | | ALoC |<------------+
+------+		+------+								
+------+		+------+								
/ \		/ \								
---		---								
----------------		----------------								
+-------+ +---------------+		+-------+ +--------------+								
	MTLoS		ConsLoS				MTLoC		ConsLoC	
+-------+ +---------------+		+-------+ +--------------+								
+-------+ +-	Student first			+-------+ +-	Course first					
		ALoS rest	-+			ALoC rest	-+			
	+---------------+		+--------------+							
v	v									
+--------------+	+-------------+									
	Student			Course						
+--------------+	+-------------+									
	String name			String name						
	int id			int credits						
+----| ALoC courses | +-----| ALoS roster |

+--------------+ +-------------+

2. Define examples of at least three Students and eight Courses, with
every student enrolled in at least two courses.

3. Design the method addCourse in the class Student that enrolls this
student in the given course. Throw an exception if the student is al-
ready enrolled in the course, or if the student’s credits would be over
20 after the enrollment is completed.

4. Design the method dropCourse that drops this student from the
given course. Throw an exception if the student is not enrolled in
the given course, or if it would result in this student being registered
for fewer than two courses after the drop is processed.

5. A student meets an interesting fellow student and wonders whether
or not they might meet during one of the classes our student is en-
rolled in. Design the method canMeet that determines this student
is taking a course that the other student is also enrolled in.

6. The registrar keeps a list of all students and a list of all courses. These
are set up at the beginning of each quarter. Design the class

3

Assignment 6 c©2011 Felleisen, Proulx, Chadwick, et. al.

Registrar to manage these lists and include your original examples
in the registrar’s database.

7. Design the method register that consumes the name of a student,
the student’s id, and a course name, and enrolls the given student
in the given course. The same restrictions on registration apply as
before. Additionally, the method should throw an exception if any of
the information given does not exist (no student with the given name
and id, or no course with the given name).

8. Design the method withdraw that consumes the name of a student,
the student’s id, and a course name, and drops the given student from
the given course. The same restrictions apply as above.

Note 1: Most of these methods require several helper methods. At least
half of the grade for this homework will be assessing the design of these
helpers – whether you truly follow the rule one task = one method.

Note 2: All of these methods (except canMeet), are defined only to affect
a change in the registrar system. Design your tests carefully. At least one
half of the grade for this homework will be assessing the design and imple-
mentation your tests for these methods.

Note 3: Did you notice that the above two criteria cover two halves of the
grade for the homework? Well, there is some wiggle room, but we really
want you to understand how important these two issues are (i.e., helpers
and testing).

6.2 Problem: Mutating Object State

Start a new Java project (i.e., Assignment-06-2 for this problem. Here
we extend what we learned in the portfolio problem. We would like to
build a list in such a way that we can start either at the front, or at the back,
and move through the list in either direction. In order to do so, we have
decided on the structures to represent the following scenarios:

4

Assignment 6 c©2011 Felleisen, Proulx, Chadwick, et. al.

+-------+
| Deque |
+-------+

+--| head |
| | tail |--+
| +-------+ |
| |
v v

+----------+ +----------+
| Head | | Tail |
+----------+ +----------+
""		""
next	-->	null
null	<--	prev
+----------+ +----------+

+-------+
| Deque |
+-------+

+--| head |
| | tail |---------------------------------+
| +-------+ |
| |
v v

+----------+ +----------+ +----------+ +----------+
| Head | | Node | | Node | | Tail |
+----------+ +----------+ +----------+ +----------+
""		"abc"		"def"		""
abcnode	-->	pqrnode	-->	tailnode	-->	null
null	<--	headnode	<--	abcnode	<--	pqrnode
+----------+ +----------+ +----------+ +----------+

Instead of one sentinel node, we have two of them: one marking the
head of the queue and the other marking the tail of the queue. Additionally,
we have a new field in each node, a reference to the previous item in the
list.

5

Assignment 6 c©2011 Felleisen, Proulx, Chadwick, et. al.

The class diagram for modeling this data would then be:

+------------+
| Deque |
+------------+

+--| Node head |
| | Node tail |--+
| +------------+ |
| |
+-------+ +--------+

| |
+----------+ | | +-----------+
+--+				+--+				
	v v v v v v							
	+-------------+							
		Node						
	+-------------+							
		String data						
+-	Node next							
	Node prev	-+						
+-+---------+-+								
/ \ / \								
+---+ +---+								
+-----------+ +-----------+								
	Head		Tail					
+-----------+ +-----------+								
	""		""					
+-	Node next		null					
null		Node prev	-+					
+-----------+ +-----------+

1. Define the classes Node, Head, Tail, and Deque that implement
doubly-linked lists of Strings. Use the code from the portfolio prob-
lems as your model.

2. Make examples of three lists: the empty list, a list with two values
("abc" and "def") shown in the drawing at the beginning of this
problem, and a list with three values, ordered lexicographically from
the head to the tail.

3. Design the method size that counts the number of nodes in a list
(Deque), not including the two sentinel nodes (the head and the
tail).

4. Design the method addAtHead for the class Deque that consumes a
String and inserts it at the head of this list. Be sure to fix up all the
links correctly!

6

Assignment 6 c©2011 Felleisen, Proulx, Chadwick, et. al.

5. Design the method addAtTail for the class Deque that consumes a
String and inserts it at the tail of this list. Again, be sure to fix up
all the links correctly!

6. Design the method removeFromHead for the class Deque that re-
moves the first node from this Deque. Beside the obvious effect, it
should produce the String that was removed.

Throw an exception, if an attempt is made to remove from an empty
list.

7. Design the method removeFromTail for the class Deque that re-
moves the last node from this Deque. Beside the obvious effect, it
should produce the String that was removed.

Throw an exception, if an attempt is made to remove from an empty
list.

8. Design the method insertSorted for the class Deque that con-
sumes a String and inserts it into this sorted list in the correct order.

9. Design the method removeSorted for the class Deque that removes
the node that contains the given String from this Deque.

Throw an exception, if the there is no such String.

10. Design the method toLowerCase for the class Deque that changes
all the Strings to lower case.

The class String defines the method toLowerCase that produces a
new String with all letters changed to lower case.

Note: Do not use this method with special characters without looking
up the formal documentation for the method.

7

