
Assignment 4 c©2011 Felleisen, Proulx, Chadwick, et. al.

Understanding Complex Data

Due: 2/8/2011 10:00pm

Portfolio Problems

1. Problem 15.8 on page 175

2. Design an interface (and classes) to represent a list of numbers (ints),
then design the following methods. Use a helper method with an
accumulator, and make sure your purpose statements explain the
meaning of your accumulators:

// Sum all the numbers in this list
int sumElements();

// Find the maximum number in this list
int max();

// Find the minimum number in this list
int min();

Hint: for the second and third methods you should start your ac-
cumulator with the smallest and largest integers respectively (think
about it...). These values are handily defined in the Integer class,
i.e., Integer.MIN VALUE and Integer.MAX VALUE.

Pair Programming Assignment

Important: Be sure to create the Assignment-04/src directory and name
the files exactly as requested for each problem. We will not grade incorrectly
named/organized submissions.

Also, make sure you design templates, use helper methods, and follow
the containment and inheritance arrows in the diagram. In this assignment
we will grade the templates.

1

Assignment 4 c©2011 Felleisen, Proulx, Chadwick, et. al.

4.1 Problem

Work out the following problems using your class hierarchy that repre-
sents lists of Citys from the the previous homework. Again, save these
problems in the file Cities.java, but in your repository’s
Assignment-04/src directory:

A. Design the method totalDistance that computes the total distance
between the cities in this list. Hint: Remember how we used the ac-
cumulator in class (long ago)?

B. Design the method contains that determines whether or not this
list contains the given City. Hint: how should we compare cities?
What class should be responsible?

C. Design the method hasLoop that determines whether
traveling through the cities in this list will cause us visit the City
twice.

4.2 Problem

Start with the file ExcelCells.java. Save your solution in the file
ExcelCells.java in your repository’s Assignment-04/src directory:

For this problem we use classes that represent data in the cells of a
spreadsheet. For each cell we record its row and column, where the cell
is located, and the data (IData) stored. An (IData) is either a number
(int) or a Formula. Each formula can be one of three possible functions:
+ (representing addition), min (producing the minimum of the two cells),
or * (computing the product) and involves two other cells in the computa-
tion.

A. Make an example of the following spreadsheet segment:

| A | B | C | D | E |
--+------------+----------+-------+-------+------------+
1 | 8 | 3 | 4 | 6 | 2 |
--+------------+----------+-------+-------+------------+
2 | min(A1,E1) | +(B1,C1) | | | *(B2,D1) |
--+------------+----------+-------+-------+------------+
3 | *(A1,A2) | +(B2,B1) | | | min(A3,D1) |
--+------------+----------+-------+-------+------------+
4 | | +(B3,B2) | | | min(B4,D1) |
--+------------+----------+-------+-------+------------+
5 | | +(B4,B3) | | | *(B5,E4) |
--+------------+----------+-------+-------+------------+

2

Assignment 4 c©2011 Felleisen, Proulx, Chadwick, et. al.

B. Draw this spreadsheet on paper and fill in the values that should
show in each cell.

C. Design the method value that computes the value of this cell. Hint:
follow the recipe... examples really help.

D. Design the method countFuns that computes the number of func-
tion applications (Formulas) involved in computing the value of this
Cell.

E. Design the method countPlus that computes the number of Plus
applications needed to compute the value of this Cell.

4.3 Problem

Revise your solution to the problem from last assignment that dealt with
bank accounts. Save these problems in the file Banking.java, in your
repository’s Assignment-04/src directory:

A. Define an abstract class AAccount and abstract the fields common
to all IAccounts.

B. Revise the method amtAvailable for the classes. Can it be lifted to
the abstract class? Or, does it have to be defined in each class that
extends AAccount?

C. Revise the method moreAvailable, which determines whether this
account has more available for withdrawal than the given account.
Again, can this method be lifted to the abstract class? Or does it
have to be defined in each class?

D. Revise the method withdraw that produces a new IAccount, same
as this one, but with the given amount withdrawn. Can this method
be lifted to the abstract class? Or does it have to be defined in each
class?

E. Define the method sameName that determines whether this account
has the same name as the given account. Where can this method be
implemented?

3

Assignment 4 c©2011 Felleisen, Proulx, Chadwick, et. al.

4.4 Problem

It is time to have some fun. Can the chicken cross the road? It is your job to
give her a chance to try.

Save your solution in ChickenWorld.java, in your repository’s
Assignment-04/src directory. For this problem you’ll need to add the
JavaWorld-3.jar (Note the “3”) library to your project and place it in
your EclipseJars directory. See the Lab for directions and other links to
set this up.

4.4.1 The Chicken Game

Your task is to create a little “game”, where a chicken (represented by a
Circle or a Star or some other shape ... be creative) tries to cross the
road and avoid getting hit by cars traveling across the screen.

More precisely, create a class ChickenWorld that extends World and
contains a representation of a chicken and a list of cars. The player (chicken)
should get a number of lives, and should use arrow keys to move left/right/
up/down. For simplicity have a fixed number of cars that move at the same
speed. When a car is completely off screen it should jump back to the start
on the other side. If you are feeling ambitious you can have multiple lanes
moving in opposite directions.

If the chicken is struck by a car, then the player loses a life and goes back
to the beginning. If all the lives are used up then you should display "Game
Over" (or some other message) and the game should stop (see documen-
tation for the World class from the link below, in particular stopWhen and
lastScene).

You need to design at least three methods for ChickenWorld: toDraw,
onTick, and onKey. The signatures and purpose statements are given in a
comment, and more information can be found in the JavaWorld documen-
tation:

http://www.ccs.neu.edu/home/chadwick/javaworld/doc/index.html

Be sure to design the methods including examples and tests before you code
the method bodies. If methods get too complicated or you think the imple-
mentation should be spread over the classes then feel free to design helpers.
You’ll need to design methods for motion, interaction and collision detec-
tion. Make sure you design your methods well, but feel free to implement
more advanced/interesting features.

JavaWorld library provides classes to represent Scenes and Images
with overloaded methods like placeImage, which accepts a Posn, or two

4

Assignment 4 c©2011 Felleisen, Proulx, Chadwick, et. al.

ints:

// Place an Image on this Scene at the given Posn
Scene placeImage(Image i, Posn p);

// Place an Image on this Scene at the given X/Y
Scene placeImage(Image i, int x, int y);

The file ChickenWorld.java is provided as a starter. We’ve given
you the skeleton of the world, and a CartPt class that extends Posn.
Feel free to add any helper methods needed to this class, and since every
CartPt is also a Posn, they can still be passed to placeImage. Part of the
point of this assignment is for you (and your partner) to design the data
and methods required... so embrace the freedom we’ve given you!

Be creative! And design well!

5

