
Assignment 11 c©2011 Felleisen, Proulx, Chadwick, et. al.

Priority Queue; Heapsort; Huffman Code;
Graph Traversals

Practice Problems

Practice problems help you get started, if some of the lab and lecture material is
not clear. You are not required to do these problems, but make sure you understand
how you would solve them. Solving them on paper is a great preparation for the
exams.

Finish the implementation of the Priority Queue from the Lab 11.

Pair Programming Assignment

Due Date: 6 April 2011 at 10:00 pm

11.1 Heapsort

Save this work in the directory Assignment-11-1
Design the method heapsort that consumes an ArrayList<T> and

a Comparator<T> and produces an ArrayList<T> sorted in the order
defined by the given Comparator<T>.

There are two steps to implementing the heapsort algorithm, once you
have implemented the heap-based priority queue algorithm as described
in part 2 of Lab 11:

1. method heapify: Insert the given data into your PriorityQueue,
one item at a time.

2. method destroyHeapRemove the data from your PriorityQueue
and insert them into the resulting ArrayList<T>, one at a time.

1

Assignment 11 c©2011 Felleisen, Proulx, Chadwick, et. al.

11.1.1 Extra Credit

Save this work in the directory Assignment-11-1a

Design an in-place version of the heapsort as follows:

1. Heapify Design the method heapify that mutates the given ArrayList<T>
using the given Comparator<T> into a priority heap as follows:

Insert a new null item at the index 0 so that the index values corre-
spond to the heap node labels.

Start with the first node that is not a leaf, (at location k = heapsize/2
and downheap from there.

Repeat the above step for nodes k − 1, k − 2, ...1.

2. Build Sorted ArrayList

If your priority queue selects the biggest item as the one with the
highest priority, you can just move each item (when removed from
your heap) the end of the ArrayList<T>, but remember to reduce
the size of the heap area, since the sorted elements will be at the end of
your list. Once you remove the last item you will have a list ordered
in ascending order (with the unused item at index 0, which can be
removed the heap has been destroyed).

Design the method buildSorted that mutates the given ArrayList<T>
that represents a heap (with a dummy item at index 0) and the given
Comparator<T> to define the ordering, as follows:

• Swap the last item in the heap with the first one.

• Decrease the size of the heap by one.

• Downheap from the root node (at index 1)

• Repeat the three steps until the heapsize is equal to 1

3. HeapSort

Design the method heapsort that mutates the given ArrayList<T>
using the given Comparator<T> into sorted order by invoking the
two methods defined above, and finally removing the unused item at
the index 0.

2

Assignment 11 c©2011 Felleisen, Proulx, Chadwick, et. al.

11.2 Huffman Code

Save this work in the directory Assignment-11-2

We will now use the solution to the second part of the lab on a practical
problem.

1. Start by completing the Huffman Code problem from Lab 11.

2. Modify the computHistomethod so that it consumes an Iterator<String>.
(This makes it possible to supply the data from a larger collection,
such as an entire English dictionary.)

3. Design the method encodeString that consumes a String (such
as a line of text) and a KeyTree for the encoding, and produces a
String that is the encoding of the letters in the given String based
on the code that the KeyTree represents.

Note: Think carefully before you decide which class each of these
methods should be defined.

11.3 Graph Traversal Algorithms

11.3.1 Graph Algorithms for US states

Start by checking in all the work you have done for the graph algorithms
last week. Use a directory Assignment-10-1

The Background

In the first part of this assignment (last week) you have designed three
variants of the graph traversal algorithms: the Breadth-First Search, the Depth-
First Search, and the Shortest Path Search. The three algorithms should have
been using the same code, except for the implementation of the to-do data
structure, as follows:

• Depth-First Search: uses a Stack to record the ToDo information

• Breadth-First Search: uses a Queue to record the ToDo information

• Shortest Path Search: uses a Priority Queue to record the ToDo
information

Our goal now is to turn your program into a library that can be used by
anyone to find routing in an arbitrary graph.

3

Assignment 11 c©2011 Felleisen, Proulx, Chadwick, et. al.

The Graph Traversal Library

Download the files in GraphLibrary.zip. Create a project Assignment-11-3
and import all files into it. You should have the following files:

• USmap.java: a representation of the 48 continental US states

• City.java: a representation of a state capital of the 48 US states

• State.java: a representation of one node in the graph that repre-
sents the US map

• EuroGraph.java: a representation of the map of central European
states

• Node.java: an interface that represents a node in a graph. The three
methods provide all information the graph algorithms need to imple-
ment the traversals.

• Graph.java: an abstract class that is used by the graph traversal algo-
rithms. It includes a representation of a graph, a method to initialize
the graph data, a method for extracting the list of neighbors of any
node, a method for computing the distance between two nodes in
the graph, and a method to provide a String representation of the
graph.

The two classes USmap and EuroGraph extend this class and show
you two ways of designing a new graph yourself.

• ToDo.java: an interface that provides all methods that the graph
traversal algorithms need to use the to-do information.

Last week you should have designed three classes that implement
this interface: ToDoQueue for Breadth-First Search, ToDoStack for
Depth-First Search, and ToDoPriorityQueue for Shortest Path Search.

• GraphAlgorithms.java: This class provides a skeleton for the li-
brary class you need to implement. The main part of the assignment
is to complete the design of this class. A more detailed description
is given below.

• GraphAlgoView.java: A class that generates a GUI dialog for iter-
actively running several algorithms. For each run you can select the
origin, destination, and the algorithm/search variant.

4

Assignment 11 c©2011 Felleisen, Proulx, Chadwick, et. al.

The class is initialized with an instance of a Graph and an instance
of the GraphAlgorithms class. The buttons that select the algo-
rithms invoke the methods defined in the GraphAlgorithms class:
findRouteBFS, findRouteDFS, or findRouteSPS.

• jpt.jar is library used by GraphAlgoView to generate the GUI
components and handle the user interactions. You will learn more
about it in the lab on April 12th.

11.3.2 ToDo Classes

Complete the implementation of the three classes that implement the ToDo
interface: ToDoQueue, ToDoStack, and ToDoPriorityQueue.

11.3.3 GraphAlgorithms class

Complete the design of the GraphAlgorithms class.
The class GraphAlgorithms contains three fields needed by all the

graph taversal algorithms: graphData, path, and todolist. It also im-
plements three methods with headers (and obvious purposes):

ArrayList<FromTo> findRouteBFS(String origin, String destination)
ArrayList<FromTo> findRouteDFS(String origin, String destination)
ArrayList<FromTo> findRouteSPS(String origin, String destination)

Each method invokes the following method passing a new todolist ap-
propriate for the selected algorithm:

/** Produce the path from the given origin to the

* given destination, using the given ’to do’ list */
ArrayList<FromTo> runAlgo(String origin, String destination, ToDo todolist){

this.todolist = todolist;
this.path = new Path();
todolist.add(new FromTo("", origin, 0), this.path);
return this.buildPath(destination);

}

Your task is to supply the missing method that implements the graph traver-
sal algorithms you have worked on last week, and any helper methods you
may need.

ArrayList<FromTo> buildPath(String destination){ ... }

You will also need toString methods to display the route directions as
String. You do not need to display the graph of the map or animate the
routing.

5

Assignment 11 c©2011 Felleisen, Proulx, Chadwick, et. al.

11.3.4 Additional Examples

Create a class that represents a new graph with at least 8 nodes and 20
edges. Add tests that use this graph with your GraphAlgorithms class.

You should be able to swap with a friend/classmate and use each other’s
graphs interchangeably.

11.3.5 Testing

Remember, designing tests for every part of your program will make your
life much easier. You will know what it should do (especially if you write
the purpose statements carefully), what it actually does, and how it can be
used in further design. If that is not enough motivation, you can also get
points for the good test design, or lose points if the tests are not sufficient.

Add several tests that use your new graph.

6

