
Assignment 10 c©2011 Felleisen, Proulx, Chadwick, et. al.

Graph Travesals: Using Libraries, Building
Libraries

• Code reviews are to be done by 30 March 2011

• Problem 1 is due on Wednesday 30 March 2011

• Problem 2 is due on Wednesday 6 April 2011 but you need to get a
lot done this week and have to check in your partial work.

Practice Problems: The Java Collections Framework

Practice problems help you get started, if some of the lab and lecture material is
not clear. You are not required to do these problems, but make sure you understand
how you would solve them. Solving them on paper is a great preparation for the
exams.

Read through the documentation for Java Collections Framework li-
brary. Find how you can use the stacks and queues and the priority queue
defined there. Write a simple program that will test these algorithms.

Pair Programming Assignment

Code Reviews

Reminder only

This part of the assignment will act as a multiplier for the grade for the
last week’s assignment. If you fail to do this part, the grade for the en-
tire assignment will be zero. If you fulfill this part of the assignment, the
grade for this assignment will be computed in the usual way, based on the
remaining three problems.

To get a passing grade for this part, you must meet with your TA during
the next two weeks (prior to 30 March 2011) and go with him over the code
in some of your previous homeworks, especially the Chicken Game. Please,

1

Assignment 10 c©2011 Felleisen, Proulx, Chadwick, et. al.

look at the wiki, where the TAs are posting their availability, email you
TA to schedule an appontment, or talk to your TA during the lab. The TA
assignments are posted on the wiki with the pair assignments.

10.1 William Shakespeare

10.1.1 The Application

Have you ever wondered about the size of Shakespeare’s vocabulary? For
this assignment you will write a program that reads its input from a text
file and lists the words that occur most frequently, together with a count
of how many different words occur in the file. If this program were to run
on a file that contains all of Shakespeare’s works, it would tell you the ap-
proximate size of his vocabulary, and how often he uses the most common
words.

Macbeth, for example, contains about 4542 distinct words, and the word
”king” occurs 202 times.

Macbeth, for example, contains about 3201 distinct words, and the word
”macbeth” occurs 288 times.

10.1.2 The Problem

Start by downloading the file Assignment10.zip and making an Eclipse
project named Assignment-10-1 (with a src directory) to contain the
files. Run the project, to make sure you have all pieces in place. The
Examples class uses the tester package as we have done before.

You are given the file Macbeth.txt that contains the entire text of
Macbeth and a file StringIterator.java that contains code that gen-
erates Words from a file (e.g., Macbeth.txt) one at a time. Save the file
Macbeth.txt in the Eclipse project directory (where you find the sub-
directories src and bin). The Examples class includes a code that invokes
the processing of the complete text of the play Macbeth.
Note: Here you will use the imperative Iterator interface that is a part of Java
Standard Library. Make sure to look up the documentation for this interface and
understand how it works.

We’ve given you skeletons of the classes involved... finish the imple-
mentations by completing the following tasks:

2

Assignment 10 c©2011 Felleisen, Proulx, Chadwick, et. al.

1. Design the class Word that represents one word of Shakespeare’s vo-
cabulary together with its frequency counter. The constructor takes
only the String (for example the word ”king”) and starts the counter
at 1 (one).

Two Word instances are equal to each other if they represent the same
String, regardless of their frequency counters. That means that you
have to override the equals() and hashCode() methods.

2. Implement a toStringmethod for Word that returns the word String
and its frequency, and an increment() method that increments the
Words frequency.

3. Design a class WordsByFreq that implements the Comparator in-
terface, so that the words can be sorted by frequencies. (Be careful!)
When you are done, place this class definition as the last part of the
class definition of the class Word. This is called an inner class.

Note: In this program there will be two ways of comparing the instances of
the Word class - by the String that it represents and by the counter for the
word that this instance represents.

4. Design the class WordCounter that keeps track of all the words we
have seen so far. It should include the following methods:

// Record the Word objects generated by the given Iterator
// and update the number of ocurrences
void countWords(Iterator<Word> it) { ... }

// How many different Words has this WordCounter recorded?
int words(){ ... }

// Prints the n most common words and their frequencies.
void printWords(int n) { ... }

Here are additional details:

5. countWords consumes a Word iterator that generates the words and
builds the collection of the appropriate Word instances, with the cor-
rect frequencies. This collection is then used by the next two method
to show the results of our text analysis.

6. words produces the number of different words that have been counted.

7. printWords consumes an integer n and prints the top n words with
the highest frequencies (using the toString method defined in the
class Word).

3

Assignment 10 c©2011 Felleisen, Proulx, Chadwick, et. al.

Note: The given code expects that you implement the classes as given,
with the same names and methods. It will then check whether your pro-
gram works correctly. That does not mean you do not need to design tests.

Testing of the Shakespeare Project

Of course, you need to test all methods as you are designing them. Design
the tests in two stages:

1. For the class Word and the the class WordCounter use a technique
similar to what was done in the past assignments, i.e. design a class
Exampleswith the necessary sample data and all tests. We’ve astarted
you off... just keep going.

2. Convert all tests into JUnit tests. Hand in both versions.

Documentation

The projects should contain Javadoc documentation that should produce
the documentation pages without any warnings. You do not need to sub-
mit the documentation pages to the repository.

10.2 Graph Algorithms: BFS, DFS, Shortest Path

This problem is a continuation and refinement of the Graph Algorithms
problem from Lab 10. Save your files in a Assignment-10-2/src direc-
tory in your repository.

The problem description

Your program needs to represent a graph with nodes that represent capitals
of the 48 US states. Each node has a name — the name of the state. For each
node, record the information about the capital of that state and a list of the
names of its neighbors. We assume that any time there is a conncetion
between two states, it is a bi-directional connection (i.e. if you can get from
here to there, you can also get from there to here).

We have already provided for you the class USMap that represents the
map of the 48 US contiguous states with all the information you will need,
including a method that computes distances between two states. (This com-
putation is grossly simplified and inaccurate, but suffices for our problem)

4

Assignment 10 c©2011 Felleisen, Proulx, Chadwick, et. al.

Ultimately, the user will select the names of the origin and destination
cities and which algorithm should be used to ocmpute the route, and your
program will display the route in some user-readable way.

The assignment description will guide you through the process and
should be used partially as a tutorial on graph traversal algorithms.

Using Libraries

Throughout the project you are encouraged to leverage as much as possible
from the existing Java libraries. The designer should focus on the design of
interfaces between tasks, between components, wrapper and adopter class
that allow you to use an existing library class in a customized setting.

Classes for the Graph Traversal Algorithms: provided

The goal of this exercise is to use the Java libraries to do the work for us. We
want to compute a path from one city to another, in a graph that represents
the 48 contiguous US states. Start a new project GraphAlgorithms. You will
be able to reuse some of what you have done before for the problems that
refered to the US cities, but we are starting anew with more effective use of
the Java libraries and a better organization of the data.

Start by downloading the file Lab10-Graphs.zip and making an Eclipse
project named Assignment-10-2 to contain the files. Run the project, to
make sure you have all pieces in place. Run the tests. To help you focus on
the interesting parts, we have given you the following classes:

• City that represents a capital of a state. It includes the location given
as latitude and longitude, as well as methods that compute the loca-
tion of the city on a Scene of size 400x400.

• State that represent a state. Its fields are the name of the state (the
two letter abbreviation, the capital City and an ArrayList of the
names of the neighboring states.

• USMap that represents the whole graph - the 48 US capitals and the
connections to the neighboring states. This class already has the code
that will initialize it with the necessary data.

Classes for the Graph Traversal Algorithms: to design

1. Reviewing existing code

5

Assignment 10 c©2011 Felleisen, Proulx, Chadwick, et. al.

Start by looking at the representation of the graph of the US. It rep-
resents the graph of states as a HashMap<String, State>, that
makes it very easy to find a state and its neighbors.

Note: (this is not important) The method makeStates uses a differ-
ent technique for initializing an entire ArrayList to the given list of
data. You do not need to understand how it is done. At some later
time you may want to trace through JavaDocs to understand how this
is accomplished,

2. Representing edges of the graph

In looking for a path from one city to another we keep track of the
visited States. For each state we visit we also remember the state we
came from and the distance we have traveled so far.

Design a class FromTo that will represent this information: the name
of the two states: the origin and the destination, as well as the dis-
tance between them in our graph. Because all information about the
capitals of all states is already recorded in the class USMap, you only
need to record the names of the states. However, the distance field
is necessary, because when designing the shortest path algorithm we
will include the distance we have traveled from the origin, not the
distance between the two states represented.

3. Representing a path in the graph

We now start defining the classes we will need to implement the
Graph Traversal Algorithms. We need to keep track of the USMap, the
path to the visited states, and a To-Do-List of states to visit. We start
with the visited states:

Define the class Path that keeps track of the visited states using a
HashMap. Use the visited state’s name as the Key and the instance of
your FromTo class as the Value. So, for example, we may have the
following information about states and traveling between them:

MA - visited first: came from "", distance 0
NY - we came from MA, distance 130
NH - we came from MA, distance 60
VT - we came from NH, distance 60 + 70
NJ - we came from NY, distance 130 + 100
PA - we came from NJ, distance 130 + 100 + 90

Make sure you include the above example in your tests. (The dis-
tances you get may be different from the ones we gave you — the

6

Assignment 10 c©2011 Felleisen, Proulx, Chadwick, et. al.

given classes implement the computation of distances and your pro-
gram should use it.

The class Path should have a constructor that consumes the String
that is the name of the origin of our journey and adds the first item
to its record of visited states. This first FromTo object should have
the origin set to the empty String, the distance set to 0, and the
destination to be the given origin.

4. In the class Path design the method pathTo that produces an ArrayList
of FromTo-s we need to go through to get to the given City. So, for
the above example, we would expect the following results:

pathTo(MA) --> [MA distance 0]
pathTo(NY) --> [MA distance 0;

NY distance 130]
pathTo(PA) --> [MA distance 0;

NY distance 0 + 130;
NJ distance 0 + 130 + 100;
PA distance 0 + 130 + 100 + 90]

5. In the class Path design the method contains that determines whether
the state given as String is a destination in this Path.

6. In the class Path design the method directionsFromTo that con-
sumes the state of origin and our desired destination (as two Strings)
and produces the travel directions as a String. For example,

directionsFromTo("MA", "MA") produces:
"from MA go to traveling a total of 0 miles"

directionsFromTo("MA", "PA") produces:
"from MA go to traveling a total of 0 miles
from MA go to NY traveling a total of 130 miles
from NY go to NJ traveling a total of 230 miles
from NJ go to PA traveling a total of 320 miles"

Note: Do not worry about making this special. Later you may change your
code to specify the direction of the travel, the distance to tne next city as well
as the cumulative distance, but design the basic solution first and move on.
Also, your formatting of the result is up to you, as long as it is helpful and
readable by the user.

7. Representing a list of edges to consider next

We now want to keep track of the neighbors of the states we plan to
visit soon (the ToDo checklist). So, for example, if we visit MA, we will
add to the ToDo checklist all of its neighboring states. However, there

7

Assignment 10 c©2011 Felleisen, Proulx, Chadwick, et. al.

are some restrictions. We do not add a neighbor to the checklist if it
is already in the Path.

The interface ToDo describes the desired behavior:
interface ToDo{

/** Add a new edge to this ToDo

* @param edge the edge that we should add

* @param path the path that has been already traveled

*/
public void add(FromTo edge, Path path);

/**
* remove a state from the ToDo checklist

* throw an exception if the checklist is empty

* @return next state to be visited

*/
public FromTo remove();

/**
* is this ToDo list empty?

* @return true if there are no more states to visit

*/
public boolean isEmpty();

/**
* Does this ToDo list contain a link to the given state?

* @param state the given state

* @return true if the given state is a destination

*/
public boolean contains(String state);

}

8. Define the class ToDoStack that keeps track of the neighbors to visit
soon that uses the Java Stack class to implement the ToDo interface
as a stack.

Note that here we do not add to the stack any edges leading to a node
that is already destination in one of the edges in this stack.

Note: We will reduce the credit for this part if you do not use the Java library
classes for this part.

9. Define the class ToDoQueue that keeps track of the neighbors to visit
soon that uses the Java LinkedList class to implement the ToDo
interface as a queue.

Note that here we do not add to the queue any edges leading to a node
that is already destination in one of the edges in this queue.

Note: We will reduce the credit for this part if you do not use the Java library
classes for this part.

8

Assignment 10 c©2011 Felleisen, Proulx, Chadwick, et. al.

10. Designing graph algorithms

Define the class GraphAlgorithms that implements the graph algo-
rithms for a specific graph. The beginning of the definition is given
as follows:

/**
* To represent an implementation of the three classical

* graph traversal algorithms:

* Breadth-First Search, Depth-First Search

* and Shortest Path.

*/
class GraphAlgorithms{

/** the data that describes this graph (a US map) */
USMap graphData;

/** The path: the list of edges leading to the visited nodes */
Path path;

/** The list of the edges leading from the visited nodes

* to their neighbors - candidates for next step in search */
ToDo todolist;

/**
* Initialize the graph that will not change

*/
GraphAlgorithms(USMap graphData){

this.graphData = graphData;
}

/* ... */
}

Add the method findRoute that will initialize the remaining data
from the given origin of the travel, the destination of the travel, and the
selected algorithm (one of "BFS", "DFS", "SPS") compute the route
using the selected algorithm and produce an ArrayList of FromTo
data that represents the desired route.

Note: At the beginning you may put a stub here that only prints out what
was the selected origin, destination, and algorithm, but initalizes the path
and the ’todo’ list.

The ground work you have done here provides all the parts you need
for implementing three different graph traversal algortihms Breadth-First
Search, Depth-First Search, and Shortest Path Search. You should make
sure you finish this part by next Wednesday, March 30th.

Algorithms

Your model should implement three graph traversal algorithms:

9

Assignment 10 c©2011 Felleisen, Proulx, Chadwick, et. al.

• Depth-First Search: uses a Stack to record the ToDo information

• Breadth-First Search: uses a Queue to record the ToDo information

• Shortest Path Search: uses a Priority Queue to record the ToDo infor-
mation

The detailed description of the algorithm appears in a separate docu-
ment. You will encounter a significant penalty for repeating the code - one
algorithm implementation should run all three variants, distinguishing be-
tween them by selecting the appropriate implementation of a common in-
terface for dealing with the ToDo information.

10.3 User interactions: To be done next week

The file GraphAlgoView.java provides the code that creates a GUI al-
lowing the user to select one of the three algorithms, the origin and the
destination for the path.

Read the code, or at least the documentation and find the three places
where you need to add the code that will invoke your implementation of
the three algorithms.

You need to add code to your program that will show the user the path
you have computed.

Before the user selects the algorithm to use and the origin and the desti-
nation for the path, she must be able to view a representation of the graph
for which the computation is to be done.

This can be a graphical display, a text that lists the nodes and the edges
(with their weights), or a graphical display of the text that lists the nodes
and the edges.

Once the path has been computed, the user should be able to see the
resulting path.

This may be a graphical display, or just a text listing the nodes along the
path.

Here is a list of possible enhancements:

• Highlight the path is a different color in the graphics display.

• Display the steps in the search by highlighting in a different color
the visited nodes, the fringe nodes (those currently in the queue or
the stack), the origin, the target, and the unseen nodes. Animate the
process using either the timer, or a user advance triggered by a key
press.

10

Assignment 10 c©2011 Felleisen, Proulx, Chadwick, et. al.

• Animate the reconstruction of the path by traversing from the found
target back to the previous node, all the way up to the origin.

10.4 Abstractions

The code you have written should work for any graph that is represented
by node labes given as Strings and some class that represents the node
data. There may be some methods required to be present in the various
classes we need to implement this algorithm, but we should be able to
parametrize all of them over the type of data that represents each node
of this graph.

The last part — with more details available next week — will be to gen-
eralize your code so you can test it with graphs we provide.

11

