
Graph Algorithms c©2011 Felleisen, Proulx, et. al.

Graph Travesal Algorithms

Graph Algorithms

The three basic algorithms that search to find a path in a graph from the
given origin to the given destination are the Breadth First Search (BFS), theDepth
First Search (DFS) and the Shortest Path (SPS) algorithm. All three use the
same basic approach and differ only in the manner in which they keep the
To Do information of nodes to visit next.

The BFS implements the To Do collection of edges as a queue.
The DFS implements the To Do collection of edges as a stack.
The (SPS) implements the To Do collection of edges as a priority queue,

selecting at each step to remove the edge with the shortest distance to the
origin.

For this algorithm to work, we need to represent the graph as a collec-
tion of nodes (we are using a HashMap) where each node can look up its
list of neighbors and it also can determine the distance to each neighbor.

When we visit a node N, we add edges leading to all of its neighbors
to the To Do collection: the information that we came from N and, in the
case of the SP algorithm, also the distance to each neighbor if we reached it
through the node N.

In addition, as we go on, we keep track for every visited node how did
we get there (the edge that we took to reach this node). This is our path
represented as an instance of the Path class.

Each algorithm consumes the name of the starting and ending nodes
and the data that represents the graph and produces a list of edges that
represent a route from the starting to the ending node.

Here is a brief description of all three algorithms:

1



Graph Algorithms c©2011 Felleisen, Proulx, et. al.

Search Algorithms

1. Start with an empty To Do collection and initalize it by adding to the
To Do the first edge with an empty String as origin, our start node
as destination and distance equal to zero.

2. Repeat the steps 3. though 4. until one of the conditions in the next
step is satisfied.

• The To Do collection is empty, in which case no path has been
found.

• Remove an edge from the the To Do collection. Add the removed
edge (from X to N distance d) to the path.
If the the destination of the edge we have removed from the
To Do collection matches our desired destination finish the work
with the Backtracking algorithm

3. Add edges leading to all neighbors M of the node N to the To Do
information as follows:

• Do not add an edge leading to M to the To Do collection if M has
been already visited (it appears in as a destination of one of
the entries in the path).

• When adding an edge leading to M to the To Do collection do the
following:

– For the DFS and BFS do not add, if the To Do collection al-
ready contains the node M as a destination of one of its
entries.

– For the SPS
If the To Do collection does not contain a destination equal
to the node M, add the edge from N to M with the distance
that is the sum of the distance to the node N and the distance
between the nodes M and N.
If it already contains the node M as a destination of one
of its entries check if the new distance (computed as above)
is shorter that the one already recorded in the list. If the
new distance is shorter, replace the previous entry for the
destination to M in the To Do collection with the new one.

2



Graph Algorithms c©2011 Felleisen, Proulx, et. al.

Backtracking algorithm

Initialize a list of edges that will represent the route from the given origin to
the given destination in our graph.

1. Remove the edge leading to the destination from the path and add it
to the route.

2. 2. Repeat: In the path find the edge that has as its destination to
the origin node of the edge that has just been added to the route.

3. Add it to the route.

4. If the origin node of the edge that has just been added to the route
is the empty string, stop and return the computed route, otherwise
return to the step 2.

3


