
Lab 7 c©2010 Felleisen, Proulx, et. al.

7 Mutating Object State

Goals

Today we touch the void. (Go, see the movie, or read the book, to understand
how scary the void can be.) We will focus on the following four topics:

• Designing methods that change the state of an object

• Designing tests for these methods

• Java Runtime Exceptions

• Designing methods that define equality of two objects

Rather than looking for just one correct solution to a problem, we will
examine several possible ways of dealing with a problem and try to com-
pare the solutions.

The Problem

We will work with bank accounts: checking, savings, or credit line. The
bank has a list of these accounts and the customer may deposit some money
or withdraw some money. Checking accounts require that the customer
keeps a minimum balance, and so never withdraws all money in the ac-
count. Credit line records the balance as the amount currently owed, and
it also remembers the maximum the customer can borrow. Customer can
withdraw money, if adding the desired amount does not increase the bal-
ance owed to be above the maximum limit. When the customer deposits
money to the credit line account, it decreases the amount owed by the de-
posited amount. Customer cannot overpay the debt in the credit line.

7.1 Methods that effect a simple state change

A. Create a Java Project and add following files to it’s source directory.

• Account.java

• Checking.java

• Savings.java

• Credit.java

• Bank.java

1



c©2010 Felleisen, Proulx, et. al. Lab 7

• AccountList.java

• Examples.java

B. Make several examples of data for Checking, Savings, and Credit Ac-
counts.

C. Describe to your partner several scenarios of making deposits and
withdrawals, to make sure you know when the transaction cannot be
completed.

D. Add the method deposit to the abstract class Account and
implement it in all subclasses:

//EFFECT: Add the given amount to this account
//Return the new balance
int deposit(int amount);

When doing so we encounter several problems:

• Question: How do we signal that the transaction cannot be com-
pleted?
Answer: Throw a RuntimeException changing appropriately
the following code:

throw new RuntimeException(
"Balance too low: " + this.balance);

Make the message meaningful. You may add to the message
some information about the account that caused the problem
- the customer name, or the current balance available, or how
much more would there need to be in the account for the trans-
action to go through.

• Question: How do we test that the method will throw the ex-
pected exception with the expected message?
Answer: Suppose the method invocation:

this.bobAcct.withdraw(1000)

throws a RuntimeException with the message:
"1000 is not available".

The test would then be:

2



Lab 7 c©2010 Felleisen, Proulx, et. al.

t.checkException(
"Testing withdrawal from checking",
new RuntimeException("1000 is not available"),
this.bobAcct,
"withdraw",
1000);

The first argument is a String that describes what we are test-
ing — it is optional and can be omitted. The second argument
defines the Exception our method invocation should throw.
The third argument is the instance that invokes the method, the
fourth argument is the method name, and after that we list as
many arguments as the method consumes — all separated by
commas. It could be no arguments, or five arguments — it does
not matter. For our method that performs the deposit, it will be
just the amount we wish to deposit.

• Question: How do we test the correct method behavior when the
transaction goes through?
Answer: We look at the purpose and effect statements. Because
the method produces a value as well as has an effect on the state
of the object that invoked, we must test both parts.
We first define instances of data we wish to use. We also define
the method reset that initializes the values for the data we ex-
pect to work with and may change during the tests. We can then
design the test as follows (assuming that the this.check1 is
the instance that should invoke the method:

//Tests the deposit methods inside certain accounts.
void testDeposit(Tester t){

reset();
t.checkExpect(check1.deposit(100), 100);
t.checkExpect(check1,
new Checking(0001, 100, "First Checking Account", 0));

reset();
}

Notice that we use the reset method twice. At the start we
make sure that the data we use has the correct values before the
method is invoked, after the test we reset the data to the original
values, so that the test would not affect any other part of the
program. Sometimes these two method invocation are divided
into two tasks: setup and tear-down. This is true of the setup

3



c©2010 Felleisen, Proulx, et. al. Lab 7

actually prepares the data to have some special values before the
method is invoked, but afterwards, we want to reset the values
to more normal state.
There are two tests we have performed. The first one is just like
what we have done in the past — we compare the value pro-
duced by the method invocation with the expected value. The
second test verifies that the state of the object we were modify-
ing did indeed change as expected.
Try the following incorrect implementations in the Checking
class of this method to see why these tests are necessary:

//EFFECT: Add the given amount to this account
//Return the new balance
int deposit(int amount){
return this.balance + amount;

}

//EFFECT: Add the given amount to this account
//Return the new balance
int deposit(int amount){
this.balance = balance + amount;
return amount;

}

//EFFECT: Add the given amount to this account
//Return the new balance
int deposit(int amount){
return 20 + (this.balance = balance + amount);

}

//EFFECT: Add the given amount to this account
//Return the new balance
int deposit(int amount){
return this.balance = balance + amount;

}

Only one of these is correct. Notice the use of the assignment as
the return value and as the value used in an arithmetic expres-
sion. The result of the assignment is always the value assigned
to the identifier on the left-hand side.
Of course, we need to test the method in every class in the union:
the Savings class as well as the CreditLine class.

4



Lab 7 c©2010 Felleisen, Proulx, et. al.

E. Add the method withdraw to the abstract class Account and
implement it in all subclasses:

// EFFECT: Withdraw the given funds from this account
// Return the new balance
int withdraw(int funds);

Make sure your tests are defined as carefully as we have done in the
previous case.

7.2 Methods that change the state of structured data

The class Bank keeps track of all accounts.

A. Design the method openAcct to Bank that allow the customer to
open a new account in the bank.

// EFFECT:
// add a new account to the list of accounts kept by this bank
void add(Account acct)

Make sure you design your tests carefully.

B. Design the method deposit that deposits the given amount to the
account with the given name and account number.

Make sure you report any problems, such as no such account, or that
the transaction cannot be completed.

Make sure you design your tests carefully.

C. Design the method withdraw that withdraws the given amount from
the account with the given name and account number.

Make sure you report any problems, such as no such account, or that
the transaction cannot be completed.

Make sure you design your tests carefully.

D. Design the method removeAccount that will remove the account
with the given account id and the given name from the list of accounts
in a bank.

void removeAccount(int acctNo, String name)

Hint: Throw an exception if the account is not found

Follow the Design Recipe!

5



c©2010 Felleisen, Proulx, et. al. Lab 7

7.3 Understanding Equality

Note: This material is covered in pages 321 - 330 in the textbook. Read it
carefully.

We now want to define a method that will determine whether the given
account is the same as the given account. We may need such method to
find the desired account in a list of accounts.

Of course, now that we have the abstract class it would be easy to com-
pare just account number and the name on the account. But, maybe, we
want to make sure that the customer’s data match the data we have on
file exactly - including the balances, the interest rates, and the minimum
balances - as applicable.

The design of the method same is similar to the technique described in
the textbook. The relevant classes and examples that were handed out in
the class can be found in the file Coffee.java. You may want to look at the
code there as you work through this problem.

A. Begin by designing the method same for the abstract class Account
.

B. Make examples that compare all kinds of accounts - both of the same
kind and of the different kinds. For the accounts of the same kind
you need both the expected true answer and the expected false
answer. Comparing any checking account with another savings ac-
count must produce false.

C. Now that you have sufficient examples, follow with the design of
the same method in one of the concrete account classes (for example
the Checking class). Write the template and think of what data and
methods are available to us.

D. You will need a helper method that determines whether the given
account is a Checking account. So, design the method isChecking
that determines whether this account is a checking account. You need
to design this method for the whole class hierarchy - the abstract
class Account and all subclasses. Do the same to define the meth-
ods isSavings and isCredit.

E. We are not done. This helps with the first part of the same method.
We need another helper method that tells Java that our account is

6



Lab 7 c©2010 Felleisen, Proulx, et. al.

of the specific type. Here is the method header and purpose for the
checking account case:

// produce a checking account from this account
Checking toChecking();

In the class Checking the body will be just

// produce a checking account from this account
Checking toChecking(){
return this; }

Of course, we cannot convert other accounts into checking account,
and so the method should throw a RuntimeException with the ap-
propriate message. We need the same kind of method for every class
that extends the Account class.

F. Finally, we can define the body of the samemethod in the class Checking:

// produce a checking account from this account
boolean same(Account that){

if (that.isChecking()){
return that.toChecking().sameChecking(this);

} else {
return false;

}
}

That means, we still need the method sameChecking but this only
needs to be defined within the Checking class and can be defined
with a private visibility.

Finish this - with appropriate test cases.

G. Finish designing the same method for the other two account classes.

Alternative approaches - bad and good

Note 1 - Incorrect alternative:
The method above can be written with two Java language features, the

instanceof operator and casting as follows:

7



c©2010 Felleisen, Proulx, et. al. Lab 7

// produce a checking account from this account
boolean same(Account that){
if (that instanceof Checking){
return ((Checking)that).sameChecking(this);

} else {
return false;

}
}

However, this version is problematic and not safe.

If the class PremiumChecking extends Checking, then any object
constructed with a PremiumChecking constructor will be an instance of
Checking and the trouble that can result is illustrated in the example Test-
Same.java. You can make a simple project and run the examples, but we
include the output from the tester for illustration.

Note 2 - A correct alternative:
In the lecture we have introduced another version that also works cor-

rectly. It requires us to add a new method to the abstract class for
each class that extends the abstract class.

Lecture Notes for Lecture 16 from February 18th, 2010 posted on the
wiki show this technique for the classes that represent a list of books (ILoB,
MtLoB, and ConsLoB.

Here the methods were:

// is this list of book the same as the given empty list of books?
public boolean sameMtLoB(MtLob that)

// is this list of book the same as the given nonempty list of books?
public boolean sameConsLoB(ConsLob that)

8


