
Lab2 c©2010 Felleisen, Proulx, et. al.

2 FunJava: Understanding Data

In this lab we will focus on understanding data definitions, the distinc-
tion between information and data, how information can be represented
as data, how to interpret the information that some instance of data rep-
resents, and learn to encode the data definitions, as well as construct in-
stances of data in a class based language (like Java).

We will work in a professional Integrated Development Environment (IDE)
Eclipse using the language FunJava.

2.1 Eclipse IDE and the tester library

Goals

In the first part of this lab you will learn how to work in a commercial level
integrated development environment IDE Eclipse, using the standard Java
programming language. The environment provides an editor, allows you
to organize your work into several files that together comprise a project,
and has a compiler so you can run your programs. Several projects form a
workspace. You can probably keep all the work till the end of the semester
in one workspace, with one project for each programming problem or a lab
problem.

There are several step in getting started:

1. Learn to set up your workspace and launch an Eclipse project.

2. Learn to manage your files and save your work.

3. Learn how to edit FunJava programs and run them, using the tester
library.

Learn to set up your workspace.

Start working on two adjacent computers, so that you can use one for look-
ing at the documentation and the other one to do the work. Find the web
page on the documentation computer:

http://www.ccs.neu.edu/howto/howto-windows-n-unix-homedirs.html

and follow the instructions to log into your Windows/Unix account on
the work computer.

1

c©2010 Felleisen, Proulx, et. al. Lab2

Next, set up a workspace folder in your home directory where you will
keep all your Java files. This should be in

z:\\...\EclipseWorkspace

Note that z: is the drive that Windows binds your UNIX home direc-
tory.

Next, set up another folder in your home directory where you will keep
all your Java library files. This should be in

z:\\...\EclipseJars

We will refer to these two folders as EclipseWorkspace and EclipseJars.
Make sure the two folders EclipseWorkspace and EclipseJars are in the same
folder.

Start the Eclipse application.
DO NOT check the box that asks if you want to make this the default

workspace for Eclipse if you are working on the lab computer. If you are
working at home or using your laptop, you may want to make the selected
workspace to be your default.

Working at home: If your home computer does not have Java compiler in-
stalled, please, consult the wiki, or ask one of the TAs or tutors to help you.

The First Project

1. Download the libraries we will use. The libraries you will need are
available at a public web site at:

http://www.ccs.neu.edu/javalib/

Go to the Downloads folder and download the following libraries into
your EclipseJars folder:

• tester.jar

• draw.jar

• geometry.jar

• colors.jar

2

Lab2 c©2010 Felleisen, Proulx, et. al.

When saving the downloaded file, the dialog asks you Do you want
to open or save this file. Choose save. It then comes up with a Save
as window. Browse to find your EclipseJars folder and on the bottom
where it says Save as type instead of WINRAR archive choose All Files.
Do this for all Java libraries, otherwise Windows messes up the file.

2. You will also need the library funjava.jar that handles the FunJava
language. The link is

http://www.ccs.neu.edu/home/vkp/2510-sp10/Labs/Lab2/funjava.jar

3. Create a project.

• In the File menu select New then Java Project. In the window that
appears in the Project layout section select Create separate folders
for sources and class files and select Next. We assume you have
named it MyProject.

• In the Java Settings pane select the Libraries tab.

• On the right click on Add External JARs...

• You will get a chooser window. Navigate to your EclipseJars
folder and select all jar files you have downloaded.

• Hit Finish.

4. Add the Shapes.java file to your project.

• Download the file Shapes.java to a temporary directory or the
desktop.

• In Eclipse highlight the src box under the MyProject in the Pack-
age Explorer pane.
Note: If the pane is not visible, go to Window menu, select Show
View... then Package Explorer. You should also select Show View...
Outline.

• In the File menu select Import....

• Choose the General tab, within that File System and click on Next.

• Browse to the temporary directory that contains your Shapes.java
file.

• Click on the directory on the left, then select the Shapes.java file
in the right pane and hit Finish.

3

c©2010 Felleisen, Proulx, et. al. Lab2

5. View and edit a FunJava file Shapes.java.

• Click on the src block under MyProject in the Pacakage Explorer
pane. It will reveal default package block.

• Click on the default package block. It will reveal Shapes.java.

• Double click on Shapes.java. The file should open in the main
pane of Eclipse. You can now edit it in the usual way. Notice that
the Outline pane lists all classes defined in this file as well as all
fields and methods. It is almost as if someone was building our
templates for us.

• The TAs will guide you through setting that will convert all tabs
into spaces, and will show you how to set the editor to show you
the line numbers for all lines in the code.

• Add one new example of data for each class: Circle, Rect, and
Combo.

6. Set up the run configuration and run the program.

• Highlight MyProject in the Package Explorer pane.

• In the Run menu select Run Configurations....

• In the top left corner of the inner pane click on the leftmost item.
When you mouse over it should show New launch configuration.

• Select the name for this configuration - usually the same as the
name of your project.

• In the Main class: click on Search....

• Among Matching items select FunJava (default package) and hit OK.

• Click on the tab (x)= Arguments. In the Program arguments
text field enter ”src\Shapes.java” (if you are running Mac/OS or
Linux, use ”src/Shapes.java”).
Later, when you define your own program, you will use your
file name instead of Shapes.java. Make sure your file name does
not have spaces in it.

• At the bottom of the Run Configurations select Apply then Run.

• Next time you want to run the same project, make sure Shapes.java
is shown in the main pane, then hit the green circle with the
white triangle on the top left side of the main menu.

4

Lab2 c©2010 Felleisen, Proulx, et. al.

2.2 Data Definitions in FunJava

Look at the following data definitions in the Beginner Student HtDP lan-
guage:

;; Sample data definitions -- simple classes of data

;; to represent a pet
;; A Pet is (make-pet String Num String)
(define-struct pet (name weight owner))

;; Examples of pets:
(define kitty (make-pet "Kitty" 15 "Pete"))
(define spot (make-pet "Spot" 20 "Jane"))

1. Draw the class diagram for this data definition.

2. Create a new project in Eclipse, create a file Pet.java and convert the
data definition to the FunJava language — including the examples of
data.

3. Create a new Configuration and run the examples.

If you are comfortable with this material, you may omit the next two ques-
tions.

4. Convert the following class diagram into FunJava language:

+--------------+
| Restaurant |
+--------------+
| String name |
| String kind |
| int avgPrice |
+--------------+

5. Convert the following information to data examples for your Restaurant
class.

• Chinese restaurant Blue Moon with average price per dinner $15

• Japanese restaurant Kaimo with average price per dinner $20

• Mexican restaurant Cordita with average price per dinner $12

5

c©2010 Felleisen, Proulx, et. al. Lab2

2.3 Understanding Data: Classes with Containment

Look at the following data definitions in the Beginner Student HtDP lan-
guage:

;; to represent a pet
;; A Pet2 is (make-pet String Num Person)
(define-struct pet2 (name weight owner))

;; to represent a person - a pet’s owner
;; A Person is (make-person String Num Boolean)
(define-struct person (name age male?))

;; Examples of person data:
(define pete (make-person "Pete" 15 true))
(define jane (make-person "Jane" 19 false))

;; Examples of pet2 data:
(define kitty2 (make-pet "Kitty" 15 pete))
(define spot2 (make-pet "Spot" 20 jane))

1. Draw the class diagram for this data definition.

2. Convert the data definition to the FunJava language — including the
examples of data.

If you are comfortable with this material, you may omit the next two ques-
tions.

3. Convert the following class diagram into FunJava language:

+--------------+
| Restaurant2 |
+--------------+
| String name |
| String kind |
| int avgPrice |
| CartPt loc |--+
+--------------+ |

v
+--------+
| CartPt |
+--------+
| int x |
| int y |
+--------+

4. Make new examples for your Restaurant2 class.

6

Lab2 c©2010 Felleisen, Proulx, et. al.

2.4 Understanding Data: Unions of Classes

The class of data that represent pets in the first part is not really sufficient.
We have no idea what kind of pet the animal is. We would like to distin-
guish between the following kinds of pets:

• cats where we record whether it is a short-hair cat of a long-hair cat

• dogs where we record the breed (e.g. Husky, Labrador, etc., or Mutt
— describing an unknown breed)

• gerbils where we need to know whether it is a male of female

We need a data definition for pets that covers all these options. Of
course, we still keep track of the name of the animal and of its owner.

1. Make examples (in English words) of at least one of each kind of pets.

2. Draw a class diagram for the class hierarchy that represents this in-
formation about pets.

3. Design data definitions for this data in the FunJava language.

4. Convert your examples to data.

2.5 Representing Self-Referential Data

We want to trace your ancestry. Write down the name of your mother and
your father, for each of them the name of their mother and father - as far
as you can trace your ancestors. Write unknown when you no longer know
the names. Organize your ancestor information into a tree-like structure -
you are the root, your parents are the two branches, and each set of parents
represents the two branches above their child. (You do not need to use
actual names — feel free to make up the names of your ancestors — but go
back to at least one great-grandparent.)

Design data definition that can be used to represent this information
and then convert the information about your ancestry into data.

7

c©2010 Felleisen, Proulx, et. al. Lab2

Follow the DESIGN RECIPE for data definitions:

• Is the information simple enough to be represented by a primitive
data type?

• Are there several pieces of information that represent one entity? —
if yes, design a class of data with a field for each piece of information.

• Is any of the fields itself a complex piece of data? — if yes, deal with
designing classes for that field as a separate task.

• Are there several variants of data that should be known by a common
name? — if yes, define an interface and have each variant implement
this interface.

• Make sure you write down a comment explaining what each class of
data (or each interface) represents.

• Make sure you make examples of every class you design.

8

