
Exercise Set 9 c©2010 Felleisen, Proulx, et. al.

9 Direct Access Data Structures

Portfolio Problems

Finish Lab 9.

Working with the StringTokenizer

Set up a simple project, designing your solutions in the Algorithms class.
Add to your project the class Words.java from the assignment web site.

1. Look up the StringTokenizer class in JavaDocs. The methods
there allow you to traverse over a String and produce one word at
a time delimited by the selected characters. Read the examples. Then
write the method makeWords that consumes one String (that repre-
sents a sentence with several words, commas, and other delimiters and
produces an ArrayList<String> of words (Strings that contain
only letters — we ignore the possibility of words like ”don’t”). The
delimiters you should recognize are the comma, the semicolon, and
the question mark.

2. The text in theArrayList<String> words in the class Words is a
secret encoding. It represents verses from a poem - if you read only
the first words. Design the method firstWord that produces the
first word from a given String. Use it to decode the poem.

9.1 Eliza

Our goal is to train our computer to be a mock psychiatrist, carrying on a
conversation with a patient. The patient (the user) asks a series of ques-
tions. The computer-psychiatrist replies to each question as follows. If the
question starts with one of the following (key)words: Why, Who, How,
Where, When, and What, the computer selects one of the three (or more)
possible answers appropriate for that question. If the first word is none of
these words the computer replies ’I do not know’ or something like that.

1. Start the Eliza project by including the Interactions.java file and run-
ning the Configuration that has the class Interactions as its main
class.

The program types a prompt, waits for you to type something in and
prints back what you typed.

1



c©2010 Felleisen, Proulx, et. al. Exercise Set9

2. Design the class ReplyToQuestion that contains a keyword for a
question, and an ArrayList of answers to the question that starts
with this keyword.

For example the answers to "why" could be "I don’t know why.",
"Why not!", and "Just because.".

3. Design the method randomAnswer for the class ReplyToQuestion
that produces one of the possible answers each time it is invoked.
Make sure it works fine even if you add new answers to your database
later. Make at least three answers to each question.

4. Design the class Eliza that contains an ArrayList of several in-
stances of the class ReplyToQuestions — one for each of the ques-
tion keywords we recognize.

5. In the class Eliza design the helper method firstWord that con-
sumes a String that represents the patient’s question and produces
the first word in the String. The goal is to find out what was the
first word in the patient’s question.

Look up the documentation for the String class (and we gently hint
that the methods trim, toLowerCase, and startsWith may be
relevant).

Make sure your program works if the user uses all uppercase letters,
all lower case letter, mixes them up, etc.

So, if the patient’s question is any of the following:

Why do you think so?

Why, when I ask, you do not answer?

WHY

why am I so shy?

the method will report that the first word was "why"

6. In the class Eliza design the method findAnswer that consumes
the question String and produces the (random) answer.

If the first word of the question does not match any of the replies, pro-
duce an answer "Don’t ask me that." — or something similar.

7. Now add to the method eliza in the class Interactions the code
that uses your class Eliza to produce replies to the questions the
patient types in.

2



Exercise Set 9 c©2010 Felleisen, Proulx, et. al.

9.2 Insertion Sort

We have seen the recursively defined insertion sort algorithm both in the
first semester and also recently, using the recursively defined lists in Java.

The main idea behind the insertion sort was that each new item has
been inserted into the already sorted list. We can modify this as follows:

1. Design the method sortedInsert that consumes a sorted ArrayList<T>
a Comparator<T> that has been used to define the sorted order for
the given list, and an item of the type T. It modifies the given ArrayList<T>
by adding the given item to the ArrayList<T>, preserving the or-
dering.

Note: Be careful to make sure it works correctly when the given ArrayList
is empty, and when the item is inserted at the end of the ArrayList.

2. Design the method insertionSort that consumes an arbitrary (un-
sorted) ArrayList<T> and a Comparator<T> and produces a new
sorted ArrayList<T> as follows:

It starts with an empty sorted list and inserts into it one by one all the
elements of the given ArrayList<T>.

Note: It is a bit more difficult to define the insertion sort algorithm so
that it mutates the existing ArrayList in place.

3. Extra Credit: Required for Honors Students

Design an in-place insertionSort method. You will get the credit
only if the design is neat and clearly organized.

9.3 Simple Imperative Game

One of the popular early computer games had Mario running over moving
obstacles, jumping up to avoid them, falling down slowly with the force of
gravity.

Design a simple imperative Mario-like game using the idraw library. Fol-
low the design outlined here:

1. Use a queue to represent the current obstacles - just rectangles (maybe
of a random color). On each tick, remove the first from the queue
and add a new one to the end of the queue, to generate the effect of
moving obstacles.

3



c©2010 Felleisen, Proulx, et. al. Exercise Set9

2. Mario stays in one place in the middle of the screen. He falls down
some small distance at each tick and moves up some larger distance
in response to each up arrow key press.

3. Design the method that determines if Mario has hit an obstacle. No-
tice that you only have to check one of the moving obstacles - the
one at Mario’s location. This should be easy if you have used an
ArrayList to represent the queue.

4. Stop the game after some number of hits.

We give you a sample of the code that shows side-by-side the applica-
tive version of the world (our style till now when we produce a new in-
stance of the world in response to either a key event or a tick), as well as
the imperative version (where the state of the world mutates in response to
the key events and ticks).

The samples also show how to run visual tests of the drawings (and
provide simple helper methods you can use to display the new Canvas for
each scene you wish to show.

Finally, the samples show how to set up the test scenarios for the im-
perative games.

4


