
Mars Images c©2010 Felleisen, Proulx, et. al.

Final Project: Mars Images

The Assignment

This project asks you to work with with image data, and learn two simple
techniques for enhancement of images defined by pixel shades. Addition-
ally, you will learn how secret images can be encoded in an image, and
explore the power of colorization of images.

You will read images data files of NASA images of the planet Mars, dis-
play the images as received from the Viking Explorer, and by manipulating
this data generate enhanced images.

The Images

The data in the files mg20s002, mg20s007, etc. came from a NASA juke-
box of planetary images. Each file starts with several lines of text (a label)
that identifies the image - the location on Mars, the resolution (how large
an area is represented by one pixel), what spacecraft took the image, and
the information about the size of the image data (number of lines and the
number of pixels per line). After the label is histogram data - specifying
how many pixels there are of each shade (gray shade, just like the color
shades, has values in the range from 0 to 255). The last part of the file con-
tains the image data: each pixel is represented as one byte.

Your program that manipulates the images should use the given library
class MarsReader. You will use the following functionality of the class
MarsReader:

• The constructor for MarsReader looks for the original Mars image
file, reads the file labels and stores them in the field labels.

• The constructor then initializes the field BufferedInputStream bytestream
to deliver the bytes of the selected image.

To create new images and save then as .png files, use the given class
ImageBuilder. It works as follows:

• The constructor also initializes the field BufferedImage image that
is ready to receive the data needed to represent the resulting image.
You need to supply the height and the width of the image.

• The method setColorPixel (x, y, r, g, b) sets the color of
the given pixel in the textttimage to the specified RGB shade.

1



c©2010 Felleisen, Proulx, et. al. Mars Images

• The method public void saveImage(String filename) saves
the image you have created in the .png format — it adds the .png to
the filename you specify.

Image Processing

Each pixel shade is represented as one byte. You can read one byte of data
from the bytestream using the method

int read()

The integer will be in the range from 0 to 255.
All images in this collection have the same size: 320 lines of 306 pixels in

each line. You can set the color of each individual pixel in the BufferedImage
image using the method

void setColorPixel(int x, int y, int r, int g, int b)

A ’black and white’ image is represented by pixels of different shade of
gray. By choosing setColorPixel (x, y, s, s, s) with values of s
ranging from 0 to 255 we can represent 256 different shades of gray.

In pictures of low quality the range of the shades is often much smaller
than 256. For example, in the images from Mars most of the shades are in
the range between about 70 and 170, leaving more than half of the shades
unused. Image enhancement methods take advantage of this deficiency.
Linear scaling.

The first method uses linear scaling to modify the shade of each pixel. It
starts with computing the minimum and maximum of the existing shades.
It then scales each shade so that the range of shades is expanded to 256
values. The scaling formula is:

newshade = (oldshade - min) * (255 / (max - min));

That means that in our example (the range between 70 and 170), oldshade=70
would be represented as newshade=0, similarly, oldshade=170 would
be represented as 255, and finally, oldshade=100 would be represented
as (100 - 70) * (255 / (170 - 70)) = 30 * 2.55 = 76.5 , or
newshade=76.

We do not want to do this computation for every pixel over and over
again. Instead, we should save the computed values in a table indexed by
the oldshade values with the newshade values in the table.

Implement the linear scaling image processing and observe the impact
on the original image.
Histogram equalization.

2



Mars Images c©2010 Felleisen, Proulx, et. al.

The second method is called histogram equalization. Histogram equal-
ization is simply a transformation of the original distribution of pixels such
that the resulting histogram is more evenly distributed from black to white.

We start by computing the distribution of the pixel shades (a frequency
array or a histogram H). Histogram is a simple count of the number of oc-
currences of each pixel shade (a frequency chart). (For example a histogram
of rolling a die 100 times may tell us that we rolled 1 15 times, 2 18 times, 3
17 times, 4 12 times, 5 15 times and 6 13 times.)

We start by reading all pixel data and building the histogram. You have
actually computed a histogram of the Hamlet play in an earlier assignment.
Let us assume that hi is the number of pixels of the shade i and that h is the
count of all pixels in the image.

We compute the scaling factor si of each pixel initially at gray level i as:
si = (1/h) ∗ sum(h0, h1, h2, ..., hi)
where h is the total number of pixels and hi is the number of pixels at

gray level i (i.e. the histogram data).
Once we have the scaling factors, we compute newshadei = 255 ∗ si
Of course, again we do not want to keep recomputing these values and

store them in a lookup table instead.
Include in your program a visual display of the histogram you have

computed to verify that our assumptions about the color distribution are
correct.

Note: You will need to read the Mars data file twice - first just to com-
pute the histogram and set up the mapping of old shades to new ones, the
second time, reading the old shades and writing the new shades into the
output file.
Steganography — Omit this part

Note: Java is very strict about not mixing data types and makes conver-
sion between data types quite difficult. While this is good for making sure
programs work correctly and programmers do not misuse the language,
converting bits into characters is not a trivial task. We decided that the
work needed to accomplish this task is too difficult without a support of
appropriate library. We plan to provide such library in the future.

————-
One of the images provided to you contains a hidden message. Looking

at the picture, it is hard to tell the difference between the pixel shade 78 and
pixel shade 79, a malicious intruder encoded a secret message from Mars
in the image.

Your job is to decipher this message. Our intelligence tells us that their

3



c©2010 Felleisen, Proulx, et. al. Mars Images

message is encoded in the last bit of every pixel. By collecting the values of
last bits and converting them to characters using the ASCII encoding, you
should be able to recover the hidden message.

To accomplish this task you need to learn a bit about ASCII encodings,
about how to find the last bit of a number (hint: think of the difference
between odd and even numbers), and how to combine eight bits into a
byte. None of this is difficult, with just a bit of thinking.
Colorization

Explore what happens to your image when you add a bit of coloring to
it. One way to do it is by replacing the gray shade color

new Color(shade, shade, shade);
by
new Color(shade, 255 - shade, 255 - shade);

Hidden images
Another image among those given contains a hidden images interposed

upon the Mars image. All pixels that comprise the hidden image have their
last bit equal to 0. Your job is to recover the hidden image from the original.

Note:
We do not provide such images. Instead, create such an image ourself,

then run another program that will reveal the hidden image.
Color processing

The class ImageReader allows you to read any .bmp or .png file and an-
alyze the individual pixels. The constructor expects the name of the file to
be read. It reads the file and initializes the value of the width and height
fields for the given image.

The method Color getColorPixel(int x, int y) returns the color
value of the pixel at the given location. You can extract the red, blue, and
green component of the color as integers using the methods

c.getRed(), c.getGreen() and c.getBlue()
Create a negative of the given Flowers.png image. Explore other ways of

manipulating the images and document your exploration.
Sonification — Omit this part
Note:

Again, we hope to provide support for this type of processing in the
future — currently we do not have the library available.

The software support for this will be available next week.
—————
Often the naked eye has a hard time recognizing subtle changes in the

color that may represent the underlying structure of the surface. One place

4



Mars Images c©2010 Felleisen, Proulx, et. al.

where this is crucial is in analyzing medical scan images.
To help the observer recognize the structure of the image, one can use

sonification or sound representation of the image colors.
Your program will respond to the mouse movement over the image by

playing a tune that represents the color of the underlying shade.
Mosaic of images

One can combine several images together, for example overlay one im-
age in the middle of another one, place several images in different locations
in a larger image, etc.

Experiment with this and create something interesting.
You can also try to shrink an image by replacing every four adjacent

pixels with one pixel that has the color that is the average of the four pixels.
This reduces the size of your picture by half in both directions.

Summary

Your project should collect the various features of this image processing
suite and allow the user to select one at a time. Your documentation should
include a brief explanation of each of its part — feel free to quote or copy
parts of this assignment for inclusion in your document.

References

The idea for this lab came from the book by Robert S. Wolff and Larry
Yaeger, Visualization of Natural Phenomena, Springer Verlag 1993 (TELOS Se-
ries)

Thanks also to Peter Ford from MIT who helped us locate the original
image data file.

In 1999, The Viking Orbiter and other planetary data files could be found
at

ftp://pdsimage.wr.usgs.gov/cdroms/

We suggest using the files in vo 2002 that start with mg. For example:

ftp://pdsimage.wr.usgs.gov/cdroms/vo_2002/mg25sxxx/mg25s022.img

These files are relatively small, about 100K and contain images that are
approximately 300 by 300 pixels. See

5



c©2010 Felleisen, Proulx, et. al. Mars Images

ftp://pdsimage.wr.usgs.gov/cdroms/vo_2002/volinfo.txt

for a description of the file format.

6


