
Lab 2 c©2009 Felleisen, Proulx, et. al.

2 The Universe Teachpack: Client/Server Interactions

The goal of this afternoon is to learn to design interactive programs using
the universe teachpack in DrScheme, where several players (clients) com-
pete or collaborate using a server to administer the communications be-
tween them and act as an arbiter when necessary.

Our players (clients) each are designed as WORLDs, the server that
manages the worlds is the UNIVERSE.

You may want to read through the lecture notes for this afternoon, ex-
amine the sample code provided here, but should make sure that you de-
sign at least one part of the interactions on both the server and the client
side yourself.

If you have time left over, focus on the systematic design of a single-
player interactive game that is somewhat more complex than what you
have had a chance to do this morning.

2.1 Designing the client

The context for our example code is a children’s card game of war. Every
player shows the top card of his or her deck and the highest card takes all
cards played. The gam eends when one player runs out of cards.

We focus on a very simplified version - with no ties allowed (everyone
takes back their card), and only two players in the game. Actually, we do
not even complete this much — you have to fill in some pieces yourself.

Look at the file war-player-simple.ss. We have made this inten-
tionally very simple. The player starts with a deck of cards, and shows the
card on the top of the deck. When the player hits the space bar, the top
card is moved to the bottom of the deck and we can see the next card in the
deck. The game stops when the deck is empty.

The state of the world is our deck of cards — a list of Strings of the
form "Kd" for the King of Diamonds, or "8s" for Eight of Spades.

We now add two new features to our game. First, we have to tell the
universe what is our top card. Next, the universe will send us cards to add
to our deck, if we win the turn. So, we need to learn how to send a message
and how to receive a message.

1



c©2009 Felleisen, Proulx, et. al. Lab 2

Receiving a message

This code is actually already there. The function receive consumes the
current world and the message that has been sent and produces a new
world.

We decide that the each message should be a list of cards. That way we
may get no cards at all, or get two cards (or even more, if we extend the
game to several players).

Alternately, when the game ends, the message will be the symbol ’done.
The following code does the work:

;; receive a message: if ’done - stop the world
;; else append the card you won to the end of your list
;; receive-world: (World [Listof String] -> World
(define (receive-world w msg)
(cond
[(symbol? msg) ’stop-the-world]
[else (append w msg)]))

;; test receive-world:
(check-expect (receive-world deck ’done) ’stop-the-world)
(check-expect (receive-world deck empty) deck)
(check-expect (receive-world deck (list "4s" "Jc"))

(list "Kh" "Qd" "3s" "8c" "4s" "Jc"))

Sending a message to the server

In the simple program, on key event we just moved the top card to the
bottom. We now want to send this card to the server and remove it from
our deck.

Originally, the on-key-event function has been defined as:

;;---
;; on key event (space bar)
;; if space bar is pressed
;; remove the top card from the deck and put it on the bottom
;; the next card will now be seen by us
;; ignore all other keys, or when our deck is empty
;; on-key-event: World KeyEvent -> World
(define (on-key-event alist ke)
(cond
[(string=? ke " ")
(cond

[(empty? alist) ’stop-the-world]

2



Lab 2 c©2009 Felleisen, Proulx, et. al.

[else (append (rest alist) (list (first alist)))])]
[else alist]))

;; test on-key-event:
(check-expect (on-key-event deck "right") deck)
(check-expect (on-key-event empty " ") ’stop-the-world)
(check-expect (on-key-event deck " ") (list "Qd" "3s" "8c" "Kh"))

When the world wants to send a message, it needs to make a package
as the result of the on-key-event function (or any other function that
before produced a new state of the world. A package combines the new
state of the world with the message that will be sent to the server.

All messages (whether from the server to the client of from the client
to the server) must be plain S-Expressions. They cannot be structs, because
there is no way to communicate the structure definitions across the client-
server connections.

So, we decide that, considering we are always sending only one card to
the server, the message will be a simple String that represents the desired
card.

So, the modified function on-key-event will be:

;;---
;; on key event (space bar)
;; if space bar is pressed
;; remove the top card from the deck
;; and send it to the server
;; the next card will now be seen by us
;; ignore all other keys, or when our deck is empty
;; on-key-event: World KeyEvent ->
;; (Package: World String) | World
(define (on-key-event alist ke)

(cond
[(string=? ke " ")
(cond
[(empty? alist) ’stop-the-world]
[else (make-package (rest alist) (first alist))])]

[else alist]))

;; test on-key-event:
(check-expect (on-key-event deck "right") deck)
(check-expect (on-key-event empty " ") ’stop-the-world)
(check-expect (on-key-event deck " ")

(make-package (list "Qd" "3s" "8c") "Kh"))

3



c©2009 Felleisen, Proulx, et. al. Lab 2

Run the code in the file war-player.ss. It does not worry about send-
ing a message unless it is connected to the server.

Notice how th bigbang clauses have been expanded:

;; run the world
(big-bang deck

(stop-when end-the-world?)
(on-receive receive-world)
(on-key on-key-event)
(register "127.0.0.1") ;; LOCALHOST
(on-draw show-card))

For now, comment out the line that registers this player with the uni-
verse. If needs to know the IP address of the server. You can play the game
on one machine — in that case the several running programs communi-
cate over what is know as LOCALHOST, with the IP address being always
"127.0.0.1".

2.2 Designing the server:

The code for the universe is actually more complex than it needs to be -
as we were trying to make sure there are two players in the game, no more,
and no less.

Let’s start from the beginning.
We first have to decide what information does the universe need to

run the game. It will always need a list of all worlds that are currently
connected to it. The rest depends on the game we are working on. We have
decided to record the number of cards the first and the second players have,
and a pair of the two cards that have been played in this round.

The universe needs to know what to do if a new world joins the
universe, and how to process a message from the world. Of course, this
may involve sending a message (reply) to the world, so we need to know
how to do that as well.

Processing a message

We do not have a complete code here — we should make sure that after
the player sends us a card to play, we will not accept anothercard until the
other player has sent his card and the turn is completed. In a real game,
once we get the second card of the current turn, we should send both cards
to the winner and an empty list of cards to the looser.

4



Lab 2 c©2009 Felleisen, Proulx, et. al.

We decided to make the task of replying o the player’s message very
simple: we just send back to every player the card we have received. On
the player’s side this will result in placing the card the player has sent us
back on the bottom of the player’s deck.

The function that processes a message needs to know the current state
of the universe, it needs to know which world sent the message, and, of
course, the contents of the message. In turn, it needs to produce a bundle
that consists of three parts: the new state of the universe, a list of mails
to be send to various worlds, and a list of worlds that should be discon-
nected at this time.

Each mail consists of the world to which the message should be de-
livered, and the contents of the message.

So, our process function is actually quite simple – we just send the
card we have received back to the world that has sent it to the universe’:

First let us see the data definitions for the universe] and for the bundle:

;; A Play is (make-play String String)
(define-struct play (card1 card2))

;; examples of play:
(define one-only (make-play "" "Kd"))
(define two-only (make-play "8h" ""))
(define none-yet (make-play "" ""))
(define one-wins (make-play "8h" "2d"))
(define two-wins (make-play "8h" "Jd"))

;; Universe state:
;; Number Number Play [Listof World]
;; Interpretation: number of cards each player has;
;; the pair of cards played by each
(define-struct war (p1 p2 played worlds))

;; initial universes
(define war-none (make-war 0 0 none-yet empty))
(define war-one (make-war 20 0 one-only (list iworld1)))
(define war-two (make-war 20 12 two-wins (list iworld1 iworld2)))

;; sample two decks to give to the players
(define deck1 (list "Kh" "Qd" "3s" "8c"))
(define deck2 (list "Jh" "Ad" "9s" "5c"))

; Bundle is
; (make-bundle UniverseState [Listof mail?] [Listof iworld?])

5



c©2009 Felleisen, Proulx, et. al. Lab 2

We can now look at the function that processes a message from the
world:

;; process a message
;; just send the card back to the player for now
;; process: UniverseState World Message -> Bundle
(define (process a-war iw a-card)
(make-bundle a-war

(list (make-mail iw (list a-card)))
empty))

;; test the fake process function:
(check-expect
(process war-two iworld2 "Ks")
(make-bundle war-two

(list (make-mail iworld2 (list "Ks")))
empty))

Adding a new World

When the world sends the register request to the universe, the universe
may or may not accept the connection, and it may need to send messages
to either the newly added world or possibly also to the worlds already
connected.

So, the function add-world consumes the current state of the universe
and the world that is requesting to be registered, and, again, produces a
bundle.

Of course! — the bundle contains the new state of the world, in which
the list of worlds now has the new world added (if we allowed it to join
the game). It also contains a list of messages we want to send at this time -
to both the new world and to the worlds already connected, and finally a
list of worlds to disconnect. If we do not accept the new world, the bundle
we produce will include the new world among those to be disconnected.

The code for our add-world function is quite complex, and so we re-
sorted to our golden rule, make a wish list if the task is too complex — there is
a helper function add-if-ok that adds the given world to our current list
of worlds and updates the number of cards the new player has when the
player is allowed to join the game; there is a helper function if-not-ok
that adds the given world to the list of worlds to disconnect, if we already
have two players; and a helper method mail-to that produces the mail
message to the world that has just joined the game, containing the inital

6



Lab 2 c©2009 Felleisen, Proulx, et. al.

deck of cards that has been dealt. (Well, we cheat, and give each player
only four specific cards for now.) So, with the helpers out of the way, here
is the code for adding the world to the universe:

; add the given world to the universe, if appropriate
; notify the given world if the request is denied
; if accepted, send the world its inital deck of cards
; add-world: UniverseState World -> Bundle
;
; Bundle: [add iw to the list of worlds the universe keeps:
; --- only two are allowed]
; [make a mail to iw with its deck]
; [disconnect a world if it is not allowed to join]
(define (add-world a-war iw)

(make-bundle (add-if-ok a-war iw)
(mail-to a-war iw)
(if-not-ok a-war iw)))

;; test add-world:
(check-expect

(add-world war-none iworld2)
(make-bundle (make-war 0 4 none-yet (list iworld2))

(list (make-mail iworld2 deck2))
empty))

(check-expect
(add-world war-one-on iworld2)
(make-bundle (make-war 4 20 none-yet (list iworld2 iworld1))

(list (make-mail iworld2 deck1))
empty))

(check-expect
(add-world war-two iworld3)
(make-bundle (make-war 20 12 two-wins (list iworld1 iworld2))

empty
(list iworld3)))

Read through the helper methods - and rewrite the code so the universe
always accepts a new connection and when needed disconnects the world
that has been connected for the longer time.

Disconnecting a world

When a world closes up, or the program the the world is executing fin-
ishes running, the universe notices that the world is disconnected. This

7



c©2009 Felleisen, Proulx, et. al. Lab 2

changes the state of the universe, and so the universe needs to know
what to do. The function disconnect-world consumes the current state
of the universe and the world that wishes to disconnect and produces,
guess what! — a new bundle. Of course, the world that initiated the dis-
connect action should appear in the list of worlds to be disconnected:

;; When a world wants to disconnect, just let it do so.
;; Remove it from the list of world the universe keeps
;; and send no messages
;; disconnect-world: Universe World -> Bundle
(define (disconnect-world a-war iw)
(make-bundle (make-war (war-p1 a-war)

(war-p2 a-war)
(war-played a-war)
(remove (war-worlds a-war) iw))

empty
(list iw)))

;; test disconnect-world:
(check-expect
(disconnect-world war-two iworld1)
(make-bundle (make-war 20 12 two-wins (list iworld2))

empty (list iworld1)))

Note: You are not wondering what does the remove function do - it is
yet another helper.

Running the universe

We now have to run the universe. To run these programs on one ma-
chine, make a copy of the war-player.ss so that you have two of them
open in your DrScheme, and have the war-universe.ss open as well.

To run the universe we need to run the universe function with
clauses that provide the functions we have designed:

Remember the universe named war-none we have defined when
we presented the data definitions — it had no players signed up, no cards
dealt, and no cards played. That is where we start the initial universe:

;; A Play is (make-play String String)
(define-struct play (card1 card2))

;; Universe state:
;; Number Number [Listof String] [Listof World]

8



Lab 2 c©2009 Felleisen, Proulx, et. al.

;; Interpretation: number of cards each player has +
;; the list of cards played by each
(define-struct war (p1 p2 played worlds))

(define none-yet (make-play "" ""))
(define war-none (make-war 0 0 none-yet empty))

;;---------------------------------------------
;; Start the universe with no players signed up
(universe war-none

(on-new add-world)
; (check-with cons?)

(on-disconnect disconnect-world)
(on-msg process))

We commented out the check-with clause. It should specify a pred-
icate that will verify that the given piece of data is a properly defined in-
stance of the universe.

Note: Design the predicate that will verify that the state of the universe
in our program has been defined correctly.

Once the universe is up and running, start one of the two war-player.ss
programs and see that the universe recognized that player. Then start the
second version of the war-player.ss as well. Now, click on the window
showing the card for the first player and hit the space bar. Do the same for
the second player. Close the window and observe the disconnect action.
Start the program again - and it should get connected again.

Now, try to play with a friend on another machine — all youhave to do
is supply the correct IP address in the register clause.

2.3 On Your Own

Modify the game Catch the butterfly that you have designed in the morning,
so that several players are chasing after the same butterfly. When a player
wants to catch the butterfly, she sends a message to the server with the
location of her net. The server keeps sending messages to all players on
each tick, indicating the new position of the butterfly. The game ends when
one of the players catches the butterfly.

Alternately, every time a butterfly is caught the old one disappears and
a new one appears at a new random location.

Oh, yes, — do have fun again :)

9


