
Universe c©2010 Felleisen, Proulx, et. al.

Final Project: Universe

The Assignment

In your project you should design and implement an interactive graphics-
based game for one or more players, where the player communicates with
other players or with the game administrator over the Internet.

The game administrator controls the server in this network architecture.
That means, it starts first, opens up a network port and listens for anyone
who would like to connect to the port and send messages to it. We imple-
ment the game administrator’s actions by defining a class that extends the
Universe.

The game participant designs the game as a class that extends the World
and includes the methods that respond to clock ticks and to the key presses,
as we have done before. Additionally, the game participant starts by con-
necting to the universe server, indicating the desire to join the game, reacts
to messages sent to it from the server, and sends other massages to the
server, as the game progresses.

A Sample Game

To illustrate how a simple game can be implemented we include a complete
code for a simple game together with an explanation of its design.

The player’s only action is to roll a die. To illustrate the graphic display
during the game and the use of the onTick method, the game progress is
shown by flashing dot that changes its color on each tick, and displays the
last roll of the die as a String.

The player starts by connecting to the server. When it receives a mes-
sage roll from the server, it marks its state as ready, indicating that the
human player can now roll a die. Currently, the player only hits the space
bar and the program generates the random number that is rolled. If the
reply to the server generated the next roll immediately, the game would
proceed very fast and humans would have no way to observe the progress.

When the player rolls two numbers that are the same in a row, the server
sends a congratulatory message – and the player shows this as rolling 1000.

The universe allows an arbitrary number of players. For each player it
remembers the last die that was rolled, accepts new rolls, checks if it was a
repeat of the previous roll, and sends messages back to the player when it
is ready to receive the next roll.

1

c©2010 Felleisen, Proulx, et. al. Universe

The tick count is used solely to limit the duration of the game. At the
end of the time the universe disconnects all players and the game ends.

The Universe

We show the complete code for the class that extends the Universe. The
abstract class Universe is parametrized by two types, the players
type (this is a class that extends Player), and the type of the messages
that will be sent between the player and the universe, which must extend
the java.io.Serializable interface. The simplest type of message is a
String and it requires no additional work.

Once you are comfortable with the String messages, you may explore
how to send more complex messages that can represent entire objects or a
collection of objects.

abstract class Universe<P extends Player,
M extends java.io.Serializable>>

When defining the class that extends the Universe, you also need to
define how the universe is going to keep track of its connections, the play-
ers. So, you may need to define a class that extends the Player class.
The Player class already in the library gives each player a name (String
name) and defined two methods that can be used by the Universe:

/** Disconnect this player from the universe.

*/
public void disconnect();

/** Send the given message to this player

* @param msg the message to send

*/
public void sendMessage(java.io.Serializable msg);

The following methods are declared as abstract in the Universe
class and must be implemented in the class that extends it:

/** Called by the Universe when a new Player object

* is needed The subclass can use this method to set

* the initial state of the Player

* @return a new instance of the class that extends Player

*/
public P initializePlayer();

2

Universe c©2010 Felleisen, Proulx, et. al.

/** Called when a new player connects.

* The Universe state may need to note

* the number of players or some other information.

* @param player the new player

*/
public void onConnect(P player);

/** Called when a new player disconnects.

* The Universe state may need to note

* the number of players or some other information.

* @param player the player who disconnected

*/
public void onDisconnect(P player);

/** Called when a message from a player is received.

* The Universe processes the massage and may then

* send one or more messages to this or other players.

* @param message te message that has been delivered

* @param player the player who sent the message

*/
public void onReceive(M message, P player);

/** What the universe does on each tick

*/
public void onTick();

The following code shows a simple implementation of the class that
extends Universe:

import edu.neu.universe.*;

/**
* A simple example of a game server that accepts

* an arbitrary number of players, keeps track of

* the tick count, and ends the game after 10000

* ticks.

*
* @author Viera K. Proulx

* @since 9 April 2010

*/
public class MyUniverse extends Universe<MyPlayer, String>{
int tickcount = 0;

/**

3

c©2010 Felleisen, Proulx, et. al. Universe

* When the player disconnects, print an announcement

* with the player’s name.

*
* @param p the player that has disconnected

*/
public void onDisconnect(MyPlayer p){

System.out.println("Player " + p.name +
" disconnected.");

}

/**
* After the player successfully connected, send the

* initial "roll" message.

*/
public void onConnect(MyPlayer p){

p.sendMessage("roll");
}

/**
* A Factory method that allows us to construct a new

* <code>Player</code> instance for the

* <code>Universe</code> to add to its player list.

*/
public MyPlayer initializePlayer(){

return new MyPlayer();
}

/**
* If the player rolls the same die twice,

* send him a message "deuce".

* Record the last roll and let the player roll again.

*
* @param message player’s roll

* @param p the player who just rolled

*/
public void onReceive(String message, MyPlayer p){

int newroll = Integer.valueOf(message);
if (newroll == p.roll)
p.sendMessage("deuce");

p.roll = newroll;
// roll again
p.sendMessage("roll");

}

4

Universe c©2010 Felleisen, Proulx, et. al.

/**
* Stop the game after 10000 ticks

*/
public void onTick(){
if (++this.tickcount >= 10000)

while (this.getClients().size() > 0)
this.getClients().get(0).disconnect();

}
}

The Player

The only thing our universe needs to record about each player is the value
that has been rolled on the last roll. So, our class that extends the Player
class is defined as:

import edu.neu.universe.*;

/**
* A class that represents a player

* it records that last roll

* @author Viera K. Proulx

* @since 9 April 2010

*/
public class MyPlayer extends Player{

/** a record of the last roll of the dice */
int roll;

MyPlayer(){
super();
this.roll = 0;

}
}

The World

The abstract class World actually appears in the library twice. The
first one provides the functionality needed for a single player interactive
game on one computer - similar to what we have done with the idraw li-
brary. This is in the package edu.neu.world.desktop It requires that
the programmer provides a public default constructor with no arguments

5

c©2010 Felleisen, Proulx, et. al. Universe

and implements the following methods (declared as abstract in the par-
ent class):

/**
* Called when the World starts.

* Use this instead of the constructor to perform tasks

* that should run when the World starts.

*/
public void init();

/** Draw this world on the given Canvas

*/
public void onDraw(Canvas c);

/** What the world does in reposnce to the key event

* @param key the key that triggered the event

* @param the key action: KEY_PRESSED or KEY_RELEASED

*/
public void onKeyEvent(IWorld.Key key, int type);

/** What the world does on each tick

*/
public void onTick();

The abstract class World in the package edu.neu.universe
extends the first World. It implements three methods for communicating
with the server universe:

/** Attempts a connection to the server.

* @param ip the IP address of the server

* @param port the port on which we wish to communicate

* @param name the name by which the universe will call us

*/
public void connect(java.lang.String ip, int port,

java.lang.String name);

/** Forcefully disconnect this world from the universe

*/
public void disconnect();

/** Send the given message to the universe

* @param msg the massage to send

*/
public void sendMessage(java.io.Serializable msg);

6

Universe c©2010 Felleisen, Proulx, et. al.

Additionally, the class that extends this World must implements the
following methods declared as abstract:

/** What the world does in response to a successful

* connection to the universe

*/
public void onConnect();

/** What the world does in response to being disconnected

* from the universe

*/
public void onDisconnect();

/** What the world does when the given message is received

* from the universe

* @param msg the given message

*/
public void onReceive(M msg);

The following example shows our class that extends World.

import java.util.Random;
import edu.neu.world.*;

/**
* A class to represent a dice player in a universe

* After being connected, on receiving message "roll"

* the user hits a space bar to roll again.

*
* @author Viera K. Proulx

* @since 9 April 2010

*/
@WorldSettings(height=200,width=100,tick=5,title="MyWorld")
public class Dice extends edu.neu.universe.World<String>{
/** silly toggle to flip color on every tick */
boolean even = true;

/** are we ready to roll again? */
boolean ready = false;

/** the current roll of the die to display and send to universe */
int current = 0;

/**

7

c©2010 Felleisen, Proulx, et. al. Universe

* The required public default constructor

*/
public Dice(){}

/**
* Connect to the server when the world starts

*/
public void onInit(){

this.connect("127.0.0.1", 7070, "Dice client");
}

/**
* On connection tell the universe you are ready to play

*/
public void onConnect(){

sendMessage(randomRoll());
}

/**
* Print a message indicating we have been disconnected

*/
public void onDisconnect(){

System.out.println("We have been disconnected.");
}

/**
* Allow the user to roll again

* when told to do so

* Disconnect if told to stop

* Ignore any other messages

* @param s the message received

*/
public void onReceive(String s){

if (s.equals("roll")){
this.ready = true;

}
else if(s.equals("deuce")){
this.current = 1000;

}
else if (s.equals("stop")){
disconnect();

}
}

8

Universe c©2010 Felleisen, Proulx, et. al.

/**
* Hit the space bar to roll again

* and disable roll until the next message comes

* from the universe

*/
public void onKeyEvent(IWorld.Key ke, int mode){
if (ke.equals(IWorld.Key.SPACE) && this.ready

&& mode == KEY_PRESSED){
this.current = randomRoll();
sendMessage("" + this.current);
this.ready = false;

}
}

/**
* Change the color of the dot on each tick

*/
public void onTick(){
this.even = !this.even;

}

/**
* Fill a red rectangle 50 by 100 in the top left corner

* on the world canvas,

* Display the last number rolled, (or 1000 if deuce)

* Show a flashing dot - changing the color on each tick

* @param c the world canvas

*/
public void onDraw(edu.neu.world.desktop.Canvas c){
c.fillRect(0, 0, 50, 100, edu.neu.world.Color.RED);
c.drawString("" + this.current, 20, 20, 12);
if (this.even)

c.fillCircle(25, 50, 5, edu.neu.world.Color.BLUE);
else

c.fillCircle(25, 50, 5, edu.neu.world.Color.YELLOW);
}

/**
* A helper method to generate a random number

* in the range 0 to n

*/
int randomRoll(){
return new Random().nextInt(6) + 1;

}

9

c©2010 Felleisen, Proulx, et. al. Universe

}

The latest release allow the programmer to play an audio file for some
period of time, or just once — see the Javadocs for details.

Advice

The most difficult part here is the design of the communication between
the universe and the world. Make sure your design is clean and carefully
thought out. Start small — to make sure you understand how the whole
system works.

Make sure you test everything. There may be some parts where there
is no support for simple tests. If that is the case, identify the problems, and
run the ’trial tests’ — just checking that the communications are working
out correctly.

Enjoy.

Acknowledgments

The entire package that supports the design of the universe and world has
been designed by Chris Souvey and Griffin Schneider. Our thanks to them
for giving us this great toll.

10

