
Lecture 19 c©2006 Felleisen, Proulx, et. al.

19 Lecture: Getting a New Phone Number

Goals: - Modifying fields, modifying structures.

Introduction

A cell phone keeps lists of phone numbers for people we call often. We can
assign people to groups. However, a person can be a member of several
groups. So a friend can also be a co-worker, a co-worker may be a family
member as well. For examples we may have the following lists:

Family: Bob 2345, Matt 1234, Anne 7897
Friends: Anne 7897, John 8866
Work: John 8866, Jane 3456

Obviously, these can be represented as three lists of Objects where each
element will be an instance of Person. We have the same classes as before:
ILoObject, MTLoObject, and ConsLoObject.

The information above translates into the following examples:

Person bill = new Person("Bill", 2345);
Person matt = new Person("Matt", 1234);
Person anne = new Person("Anne", 7896);
Person john = new Person("John", 8866);
Person jane = new Person("Jane", 3456);

ILoObject mtphlist =

new MTLoObject();
ILoObject family =

new ConsLoObject(bill,
new ConsLoObject(matt,
new ConsLoObject(anne,

mtphlist)));

ILoObject friends =

new ConsLoObject(anne,
new ConsLoObject(john,

mtphlist));

1

c©2006 Felleisen, Proulx, et. al. Lecture 19

ILoObject work =

new ConsLoObject(john,
new ConsLoObject(jane,

mtphlist));

When Jane gets a new phone number, we can easily design the method
newPhone that will produce a new list with Jane’s new phone number.

So, we need a method changePhone that produces a phone list with the
number for the given name changed to the given number. (We assume all
the names are different.)

The purpose statement and the method header is

// change the phone number for the person with the given name
ILoObject changePhone(String name, int phone);

which will appear the same way in the interface ILoObject.

Next we make examples:

boolean testChangePhone1 =

this.family.changePhone("Anne", 4444).same(
new ConsLoObject(bill,

new ConsLoObject(matt,
new ConsLoObject(new Person("Anne", 4444),

mtphlist))));

boolean testChangePhone2 =

this.friends.same(
new ConsLoObject(new Person("Anne", 4444),
new ConsLoObject(john,

mtphlist)));

Of course, if Anne’s phone number changes, we want that to be the case
in every list where her phone number appears.

Designing the method is easy — this is a task we have done many times
before. We get:

//−−−−−− In the class MTLoObject:
ILoObject changePhone(String name, int phone){

return this;
}

2

Lecture 19 c©2006 Felleisen, Proulx, et. al.

//−−−−−− In the class ConsLoObject:
ILoObject changePhone(String name, int phone){

if (((Person)this.first).name.equals(name))
return new ConsLoObject(new Person(name, phone),

this.rest);
else

return new ConsLoObject(this.first,
this.rest.changePhone(name, phone));

}
}

We now run the tests. The first one succeeds, but the second one fails!
We examine the friends list and see that Anne’s phone number in that list is
still 7896 — it did not change. The family phone list has no way of knowing
which persons in that list are also included in some other list. Therefore,
it cannot go and replace a Person object by a new instance of Person. If the
change is to be seen by all lists that refer to this Person, the data that the
object represents need to change — we need to change the value of the
phone field of the given person.

We start by adding a method newPhone to the class Person. This method
only changes the phone number and produces no new result.

The purpose statement and the header are:

// effect: change the phone number for this person to the given number
void newPhone(int newNumber){

this.phone = newNumber;
}

We actually wrote the code — it was so simple. However, the tests are
harder. We cannot test the value produced by the method - this method
does not produce any value. We can only observe the effects of this method.
The tests for such method always consists of three parts:

• Before: Define the data to be used in the test.

• Run: Run the method to be tested.

• After: Evaluate the effects of the method invocation.

Here are the tests for the method newPhone:

3

c©2006 Felleisen, Proulx, et. al. Lecture 19

// tests for the method newPhone in the class Person
boolean testNewPhone(){

Person rick = new Person("Rick", 3344);
Person alie = new Person("Alie", 7777);
rick.newPhone(5566);
return rick.samePerson(new Person("Rick", 5566)) &&

alie.samePerson(new Person("Alie", 7777));
}

boolean testNewPhoneResult = this.testNewPhone();

We can now proceed to changing the phone number of the person in one
of the phone lists. It is our explicit intent that this change be reflected in all
lists where this person appears - and anywhere this person’s information is
known.

Our examples from above will serve as the Before and After parts of
the test. The method header and purpose will be:

// give a new phone number to the person with the given name
// effect: the person’s phone number changes wherever person is referenced
void newPhone(String name, int phone);

In the empty case we do nothing. Alternately, we could throw an ex-
ception indicating that the person is not in our list. The methods for both
classes then become:

//−−−−−− In the class MTLoObject:
void newPhone(String name, int phone){}

//−−−−−− In the class ConsLoObject:
void newPhone(String name, int phone){

if (((Person)this.first).name.equals(name))
this.first.newPhone(phone);

else

this.rest.changePhone(name, phone);
}

Our next problem is that we want to remove a person from one of the
phone lists. However, our cell phone has a master list of all lists — and
so, again, we cannot produce a new list — we can only change the existing
one. So, we design the method header, the purpose statement and the effect
statement:

4

Lecture 19 c©2006 Felleisen, Proulx, et. al.

// remove the person with the given name from this list
// effect: the person will no longer be in this list
void removePerson(String name);

and follow up with examples/tests:

// tests for removal of a person from a list
boolean testRemovePerson1(){

ILoObject list1 =

new ConsLoObject(bill,
new ConsLoObject(anne,
new ConsLoObject(matt,

mtphlist)));

ILoObject list2 =

new ConsLoObject(anne,
new ConsLoObject(john,

mtphlist));
list1.removePerson("Anne");
return list1.contains(anne) == false &&

list2.contains(anne) == true;
}

boolean testRemovePerson2(){
ILoObject list1 =

new ConsLoObject(bill,
new ConsLoObject(anne,
new ConsLoObject(matt,

mtphlist)));

ILoObject list2 =

new ConsLoObject(bill,
new ConsLoObject(john,

mtphlist));
list1.removePerson("Bill");
return list1.contains(bill) == false &&

list2.contains(bill) == true;
}

5

c©2006 Felleisen, Proulx, et. al. Lecture 19

boolean testRemovePerson3(){
ILoObject list1 =

new ConsLoObject(bill,
new ConsLoObject(anne,
new ConsLoObject(matt,

mtphlist)));

ILoObject list2 =

new ConsLoObject(anne,
new ConsLoObject(matt,

mtphlist));
list1.removePerson("Matt");
return list1.contains(matt) == false &&

list2.contains(matt) == true;
}

boolean testRemovePersonResult1 = testRemovePerson1();
boolean testRemovePersonResult2 = testRemovePerson2();
boolean testRemovePersonResult3 = testRemovePerson3();

The eaxmples are not complete. We do not have the case where the
list contains only one person and that person is removed from the list. A
method that is invoked by an instance of ConsLoObject class cannot change
that instance to become an instance of another class (in our case that would
be MTLoObject class. We can only change the values of first and rest of any
instance of a ConsLoObject that invokes the method. Here is a first attempt
at solving the problem. If the first item is the person we wish to remove,
then replace the first with the next person in the list, i.e. this.rest.first — the
first person in the rest of this list and make the rest of the new list be the rest
of the rest of this list:

6

Lecture 19 c©2006 Felleisen, Proulx, et. al.

void removePerson(String name){
if (((Person)this.first).name.equals(name))

if (this.rest instanceof ConsLoObject){
this.first = ((ConsLoObject)this.rest).first;
this.rest = ((ConsLoObject)this.rest).rest;

}
else {... error − should not happen ...}

else

if (this.rest instanceof MTLoObject)
{... error − we do not know what to do here ...}

else

((ConsLoObject)this.rest).remove(name);
}

We see a problem here. This only works when the rest of the list is not
an empty list. There is no systematic way to remove the last person from
the list. We could try to design a helper method that only removes the last
element form the list — but we do not know that the person to be removed
is the last in the list until we get to the end. At that point, we no longer
know where we started.

The loss of knowledge suggest that we use accumulator to remember
information needed later. The problem can now be divided into two cases:
either the person to remove is the first one in the list, or we can remember
the list with the previous element as we look at the next element. Essen-
tially, the new method removeAfter will remove the given person after the
current one.

Here is the purpose statement, the effect statement, and the header:

// remove the given from this rest of the list, knowing original list
// effect: the given person will no longer be in the original list
void removeAfter(String name, ConsLoObject acc){...}

It is a strange statement — the method has effect on the accumulator
passed to it as the argument. Our three original tests should work here
too. The rest of the work follows the design recipe. The problem statement
divides the method body into two cases - either this.first is the person to be
removed, or we need to look further. Looking further is done by recursion
— this.rest.removeAfter(name, this). To remove the current item, i.e. this.first
we need to change acc by setting its first to be the first of the rest of the list
that invoked the method, and setting its rest to be the rest of the rest of this

list.

7

c©2006 Felleisen, Proulx, et. al. Lecture 19

Now, write down the template for each case and describe in words what
is the meaning of each part. Make examples of how the method is invoked
and label all parts with the items in the template. Then read aloud the
purpose statements for the method invocations. After you have done so,
try to finish the body of the method by yourself, without looking at the
solution.

This is not a nice way to solve the problem. There is no nice way. The
problem is really hard. The only way to get around the problem is to design
a level of abstraction between the list and its user. This is called a wrapper.
We design a new class MutableList that represents a mutable list, and con-
tains as its only field ILoObj list. All changes to the field use the immutable
methods we have seen before, but after new list is produced, the result is
assigned to the list that represents the current list. For example, the remove
method would be:

/∗−−−−−−−−− in the classes ILoObject:
// produce a list from this list with the given object removed
ILoObj removeILoObj(ISame obj). . .

/∗−−−−−−−−− in the class MutableList
// effect: this list will have the given object removed
void removeMutableList(ISame obj){

this.list = list.removeILoObj(obj);
}

The second strategy is much preferred for clarity, though there are times
when the first strategy is unavoidable.

Warning — Danger

Consider the following example;

Person bill = new Person("Bill", 2345);
Person matt = new Person("Matt", 1234);
Person anne = new Person("Anne", 7896);
Person john = new Person("John", 8866);
Person jane = new Person("Jane", 3456);

8

Lecture 19 c©2006 Felleisen, Proulx, et. al.

ILoObject mtphlist =

new MTLoObject();
ILoObject work =

new ConsLoObject(bill,
new ConsLoObject(matt,
new ConsLoObject(anne,

mtphlist)));

ILoObject friends =

new ConsLoObject(john,
work));

We wish to remove Matt from the work list, but he still remains a friend.
We expect the following test to be true, but it fails!

boolean testRemovePerson4(){
ILoObject mtphlist =

new MTLoObject();
ILoObject work =

new ConsLoObject(bill,
new ConsLoObject(matt,
new ConsLoObject(anne,

mtphlist)));

ILoObject friends =

new ConsLoObject(john,
work);

work.removePerson("Matt");
return work.same(new ConsLoObject(bill

new ConsLoObject(anne,
mtphlist))) &&

friends.same(new ConsLoObject(john,
new ConsLoObject(bill,
new ConsLoObject(matt,
new ConsLoObject(anne,
mtphlist)))));

}

boolean testRemovePersonResult4 = testRemovePerson4();

9

c©2006 Felleisen, Proulx, et. al. Lecture 19

Even though we never referred to the friends list, the two lists shared the
structure and changing one changed the other as well. Here is a diagram
illustrating the problem:

Before:

friends work
| |
| |
| +-----+ | +-----+ +-----+ +-----+
v | v v | v | v | v

+-------------+ | +-------------+ | +-------------+ | +-------------+ | +----------+
| first: john | | | first: bill | | | first: matt | | | first: anne | | | mtphlist |
| rest: --------+ | rest: --------+ | rest: --------+ | rest: --------+ +----------+
+-------------+ +-------------+ +-------------+ +-------------+

After:

friends work
| |
| |
| +-----+ | +-----+ +-----+
v | v v | v | v

+-------------+ | +-------------+ | +-------------+ | +----------+
| first: john | | | first: bill | | | first: anne | | | mtphlist |
| rest: --------+ | rest: --------+ | rest: --------+ +----------+
+-------------+ +-------------+ +-------------+

10

