
Lecture 15 c©2006 Felleisen, Proulx, et. al.

15 Lecture: Being Honest

Goals: - Integrity of data: Exceptions.

Introduction

Until now we have ignored the possibility that the data supplied to the
constructor may not satisfy our constraints. So, it would be possible to
construct a date with the values for the month and day being 23 and 45 —
even when we know that 23rd month and 45th day in the month cannot
represent any date in our calendar. We will now learn how we can design
the constructor that prevents the client from instantiating an object with
invalid data.

Note: We do not favor the design of programs that are overrun with clauses
that validate user supplied data against the stated contracts. It is a bad pro-
gramming style and results in obfuscating the essence of the code. In gen-
eral, the programming language constructs should allow the programmer
to state such contracts and report violations automatically.

The Problem

Let us consider the class ClockTime that represents time of day measured
in hours and minutes as shown in the class diagram in figure 1.

The assertion that the value of the hour data should be from 0 to 23 and
the value of the minute data should be from 0 to 59 is only given in the
comments following the relevant fields. Nothing prevents the client from
providing incorrect data to the constructor.

Exceptions

Java has a mechanism for signalling errors in the program at runtime. The
Java Library contains a class RuntimeException and a program that detects a
fatal error may abort by throwing an exception. Throwing a RuntimeException
is fatal to the program — it stops and produces an error message.

One example of an error for which a program that will fail is an attempt
to divide an integer by zero. So, including the following statement in your
code

System.out.println("result: " + 3/0);

1

c©2006 Felleisen, Proulx, et. al. Lecture 15

+----------------------------+
| ClockTime |
+----------------------------+
| int hour /* 24 hr clock */ |
| int minute /* 0 to 59 */ |
+----------------------------+

class ClockTime {
int hours; /* 24 hr clock */
int minutes; /* 0 to 59 */

ClockTime(int hours, int minutes){
this.hours = hours;
this.minutes = minutes;

}
}

Figure 1: A class diagram for recording the time of day

will produce the following message:

Exception in thread "main" java.lang.ArithmeticException: / by zero
at Examples.main(ClockTime.java:109)

The ArithmeticException is a subclass of RuntimeException. Other sub-
classes of the RuntimeException worth noting are IllegalArgumentException,
NoSuchElementException, UnsupportedOperationException, and ClassCastEx-
ception.

Our program can specify when to throw an exception by including the
statement

throw new XyzException("error diagnostic message");

at the appropriate place in the program.

So, for example, we can define the method remove(Object obj) that re-
moves the given object from this list. If the given object is not in the list,
the program fails — our specification dictates that this method can only be
invoked when we are certain that the list does indeed contain the given
object. The code for the class MTLoObj would then be:

2

Lecture 15 c©2006 Felleisen, Proulx, et. al.

ALoObj remove(Object obj){
throw new RuntimeException("object to be removed not found");

}

Data Verification

Let us now design an error-checking constructor for the class ClockTime. All
we need to do is assure that the hours are between 0 and 23 inclusive, and
minutes are between 0 and 59 inclusive. Here is our first version:

// construct a new ClockTime object
//verifying the hour and minute data
ClockTime(int hours, int minutes){
if (0 <= hours && hours < 24)

this.hours = hours;
else throw new IllegalArgumentException(

"hours are outside 0 - 23 range");

if (0 <= minutes < 60)
this.minutes = minutes;

else throw new IllegalArgumentException(
"minutes are outside 0 - 59 range");

}

There is a small problem here. For now the values of our fields once
initialized never change. However, soon we will see the situations where
this is no longer the case. If some methods in the program, or the client
of the ClockTime class can change the values of hours or minutes at a later
time, we want to make sure that the test for validity of this data appears
in the program in only one place. We can design a method that consumes
the given hours or another one that consumes the minutes and produces a
boolean value indicating the validity of the data.

// does the given number represent valid hours?
boolean validHours(int hours){
return 0 <= hours && hours < 24;

}

// does the given number represent valid minutes?
boolean validHours(int minutes){
return 0 <= minutes && minutes < 60;

}

The constructor would then change to the following:

3

c©2006 Felleisen, Proulx, et. al. Lecture 15

// construct a new ClockTime object
//verifying the hour and minute data
ClockTime(int hours, int minutes){

if (this.validHours(hours))
this.hours = hours;

else throw new IllegalArgumentException(
"hours are outside 0 - 23 range");

if (this.validMinutes(minutes))
this.minutes = minutes;

else throw new IllegalArgumentException(
"minutes are outside 0 - 59 range");

}

There is something unusual about these methods. The purpose state-
ment does not include the word this. The method invocation within the
constructor uses this to invoke the method, but at that point we do not
even have a complete this object. To indicate that the method is really a
function that can be invoked without any reference to the instance of the
class where it is defined, we define the method as static. We also make it
private — as there is no reason it should be invoked by any of the clients of
this class.

Note: We do not advocate using static methods. They are rarely needed
and in most cases they indicate poor programming style. We have been
using static methods in the class Math — those that compute the sqrt, the
trigonometric functions, and other such numerical calculations.

The complete class definition with examples follows:

public class ClockTime {

int hours;
int minutes;

// data verifying constructor
public ClockTime(int hours, int minutes){
if (this.validHours(hours))

this.hours = hours;
else

throw new RuntimeException("Invalid hours");

if (this.validMinutes(minutes))
this.minutes = minutes;

else throw new RuntimeException("Invalid minutes");
}

4

Lecture 15 c©2006 Felleisen, Proulx, et. al.

// constructor that defines minutes by default
public ClockTime(int hours){

this(hours, 0);
}

private static boolean validHours(int hours){
return 0 <= hours && hours < 24;

}

private static boolean validMinutes(int minutes){
return 0 <= minutes && minutes < 60;

}

// to verify the data represents a correct time
public boolean validTime(int hours, int minutes){

return this.validHours(hours)
&& this.validMinutes(minutes);

}

// to represent this data as a string
public String asString(){

return new String("class ClockTime \n" +
" hours = " + this.hours + "\n" +
" minutes = " + this.minutes + "\n");

}

public static void main(String argv[]){

ClockTime ct1 = new ClockTime(23, 38);
ClockTime ct2 = new ClockTime(3);
//ClockTime badHours = new ClockTime(25, 30);
//ClockTime badMinutes = new ClockTime(22, 70);

System.out.println(ct1.asString());
System.out.println(ct2.asString());

boolean testValidHours1 = ct1.validHours(23) == true;
boolean testValidHours2 = ct1.validHours(27) == false;

boolean testValidMinutes1 = ct1.validMinutes(38) == true;
boolean testValidMinutes2 = ct1.validMinutes(70) == false;

boolean testValidTime1 = ct1.validTime(12, 38) == true;
boolean testValidTime2 = ct1.validTime(12, 70) == false;
boolean testValidTime3 = ct1.validTime(27, 38) == false;
boolean testValidTime4 = ct1.validTime(27, 70) == false;

5

c©2006 Felleisen, Proulx, et. al. Lecture 15

System.out.println(
"testValidHours1: " + testValidHours1 + "\n" +
"testValidHours2: " + testValidHours2 + "\n" +
"testValidMinutes1: " + testValidMinutes1 + "\n" +
"testValidMinutes2: " + testValidMinutes2 + "\n" +
"testValidTime1: " + testValidTime1 + "\n" +
"testValidTime1: " + testValidTime1 + "\n" +
"testValidTime2: " + testValidTime2 + "\n" +
"testValidTime3: " + testValidTime3 + "\n" +
"testValidTime4: " + testValidTime4);

}
}

For the benefit of the clients we also added a method that validates the
entire time data - both the hours and minutes in one method.

6

