
Lab 5 c©2010 Felleisen, Proulx, et. al.

5 Understanding Constructors; Equality

5.1 Standard Java and the tester library

Goals

Starting with this lab we will use the standard Java language. Of course,
we only know a small part of the language. We will learn new features
when they are needed to support our program design process.

Moving to standard Java: File organization

Standard Java Project differs very little from the projects we have built so
far. The main difference is that standard Java expects you to define every
class and every interface in a separate file whose name is the name
of the class or interface, followed by .java. So, if our project contains
classes Book, the class Author, and the class ExamplesBooks, we will
need to define these classes in files Book.java, Author.java, and Examples-
Books.java. Typically, each Project contains all files that are used to solve
one problem.

Moving to standard Java: Visibility modifiers

The first new feature of the standard Java we need to introduce is the use
of visibility modifiers. In Java every class, interface, field, method declara-
tion, and method definition in Java typically starts with one of the words
public, private, or protected. The fields and methods declared to be
public can be accessed and are visible to all other classes — the way we
have been using the fields and methods in FunJava. Fields or methods de-
clared to be private can only be accessed within the class in which they
are defined. So, for example, if we need a helper method that is not rele-
vant for anyone using our class, we would make this a private method.
We will have example of the use of the private visibility modifiers over
the next couple of weeks.

If the visibility modifier is omitted, as we have done, the methods and
fields can be used by any other classes within the same package. In our
projects, all classes are defined in the default package, and so we only need
to add the visibility modifiers when it serves a specific purpose:

• When a class implements an interface which includes method decla-
rations, every method definition in the class that implements a method

1

c©2010 Felleisen, Proulx, et. al. Lab 5

declared in the interface must be annotated with the public visibil-
ity modifier. This is because defining a private method in an inter-
face would be meaningless.

• If a class (possibly abstract) defines a method, the class that extends
it cannot reduce the visibility of this method. If the super class defines
the method as public, the subclass must also define it as public.

We will worry about the protected visibility modifiers later.

Moving to standard Java: Setting up a Project

• Create a new Project in Eclipse, name it Date.

• Right click on the src block under Date in the Pacakage Explorer pane.
Select New then File in the File menu name your file Date.java.

• Copy the following data definition into your Date.java file and save
the file:

// to represent a calendar date
class Date {

int year;
int month;
int day;

Date(int year, int month, int day){
this.year = year;
this.month = month;
this.day = day;

}
}

• Create a new file ExamplesDates.java while the default package block
(under the src block)is highlighted. This is where you will define the
examples and tests for the Date class.

• Define the default constructor for the class ExamplesDates:

ExamplesDates(){}

• Define in the ExamplesDates class three examples of valid dates.

• Import tester.jar as External Jar, as we have done before.

2

Lab 5 c©2010 Felleisen, Proulx, et. al.

Moving to standard Java: Setting up the Run Configuration

• Highlight Date project in the Package Explorer pane.

• In the Run menu select Run Configurations....

• In the top left corner of the inner pane click on the leftmost item.
When you mouse over it should show New launch configuration.

• Select the name for this configuration - usually the same as the name
of your project.

• In the Main class: click on Search....

• Among Matching items select Main - tester and hit OK.

• Select the Arguments tab and type in the name of your Examples class
in double quotes. For this example it would be "ExamplesDates".
Notice, this is the name of the class, not the name of the file.

• At the bottom of the Run Configurations select Apply then Run.

• Next time you want to run the same project, make sure Date.java is
shown in the main pane, then hit the green circle with the white tri-
angle on the top left side of the main menu.

Moving to standard Java: Zipping up the Project

You can create an archive of your project by highlighting the project, then
choose Export then select Archive File. Eclipse will ask you for a folder
where to place the zip file and will let you choose the name for the zip file.

Your project will remain in the Eclipse workspace, but now you have
saved a copy that will not change as you keep working.

This is also the file that you will be submitting as your homework.

3

c©2010 Felleisen, Proulx, et. al. Lab 5

5.2 Understanding Constructors: Data Integrity; Signaling Errors

Goals

In this part of this lab you will practice the use of constructors in assuring
data integrity and providing a better interface for the user.

Designing constructors to assure integrity of data.

The data definitions at times do not capture the meaning of data and the
restrictions on what values can be used to initialize different fields. For
example, if we have a class that represents a date in the calendar using
three integers for the day, month, and year, we know that our program is
interested only in some years (maybe between the years 1500 and 2500),
the month must be between 1 and 12, and the day must be between 1 and
31 (though there are additional restrictions on the day, depending on the
month and whether we are in a leap year).

Suppose we use the Date class to check for overdue books.

// to represent a calendar date
class Date {

int year;
int month;
int day;

Date(int year, int month, int day){
this.year = year;
this.month = month;
this.day = day;

}
}

and a simple set of examples:

class ExamplesDates {
ExamplesDates() {}

// good dates
Date d20060928 = new Date(2010, 2, 28); // February 28, 2010
Date d20071012 = new Date(2009, 10, 12); // Oct 12, 2009

// bad dates
Date b34453323 = new Date(3445, 33, 23);

}

Look at the third example of a date.
Of course, the third example is pure nonsense. Only the year is possibly

valid - still not really an expected value. To validate the date completely
(taking into account all the special cases for different months, as well as

4

Lab 5 c©2010 Felleisen, Proulx, et. al.

leap years, and the change of the calendar at several times in the history)
is a project on its own. For the purposes of learning about the use of con-
structors, we will only make sure that the month is between 1 and 12, the
day is between 1 and 31, and the year is between 1500 and 2500.

Did you notice the repetition in the description of the valid parts of the
date? This suggests, we start with the following methods:

• method validNumber that consumes a number and the low and
high bound and returns true if the number is within the bounds (in-
clusive).

• methods validDay, validMonth, and validYear designed in a
similar manner.

Design at least one of these methods - you can finish the others at home.
For the purposes of being able to test at least the part of the program that is
completed, have the other methods produce true for the time being. (We
call such temporary method definitions stubs.)

Once you have done so, change the constructor for the class Date as
follows:

Date(int year, int month, int day){
if (this.validYear(year))

this.year = year;
else

throw new IllegalArgumentException("Invalid year in Date.");

if (this.validMonth(month))
this.month = month;

else
throw new IllegalArgumentException("Invalid month in Date.");

if (this.validDay(day))
this.day = day;

else
throw new IllegalArgumentException("Invalid day in Date.");

}

This example show you how you can signal errors in Java. The class
IllegalArgumentException is a subclass of the RuntimeException.
Including the clause

throw new ...Exception("message");

in the code causes the program to terminate and print the specified error
message.

5

c©2010 Felleisen, Proulx, et. al. Lab 5

We want to make sure that this constructor will indeed accept only the
valid dates.

The tester library version 1.3.5 released on 5 February 2010 (please,
download the new version) allows us to test this constructor.

It provides two test cases:

t.checkConstructorException(String testName,
Exception e, String className,
Arg1Type arg1, Arg2Type arg2, ...);

t.checkConstructorException(
Exception e, String className,
Arg1Type arg1, Arg2Type arg2, ...);

The following test case verifies that the constructor throws the correct
exception with the expected message, if the supplied year is 3000:

t.checkConstructorException(
new IllegalArgumentException("Invalid year in Date."),
"Date", 3000, 12, 30);

Run the program with this test. Now change the test by providing an
incorrect message, incorrect exception (e.g. NoSuchElementException),
or by supplying data that do not cause the constructor to throw an excep-
tion. Observe the messages that come with the failed tests.

Java provides the class RuntimeException with a number of sub-
classes that can be used to signal different types of errors.

We will learn how to design a new subclass of the RuntimeException
class that is designed to deal with errors specific to our program at some
later date.

Overloading constructors to provide flexibility for the user: providing
defaults.

When entering dates in the current year it is tedious to always have to enter
2010. We can make avoid the need to type in the year by providing an
additional constructor that requires the user to give only the day and month
and assumes that the year is the current year (2010 in our case).

Remembering the single point of control rule, we make sure that the new
overloaded constructor defers all of the work to the primary full construc-
tor:

6

Lab 5 c©2010 Felleisen, Proulx, et. al.

Date(int month, int day){
this(2010, month, day);

}

Add examples that use only the month and day to see that the construc-
tor works properly. Include tests with invalid month or year as well.

Overloading constructors to provide flexibility for the user: expanding
the options.

The user may want to enter the date in the form ”Oct 20 2010”. To make
this possible, we can add another constructor:

Date(String month, int day){ ...
}

Our first task is to convert the String that represents the month into a
number. We can do it in a helper method getMonthNo:

// convert a three letter month code into the numeric month value
// return 13 if the month code is not valid
int getMonthNo(String month){
if (month.equals("Jan")){ return 1;}
else {if (month.equals("Feb")){ return 2;}
else {if (month.equals("Mar")){ return 3;}
else {if (month.equals("Apr")){ return 4;}

...
else {return 13;}}}}}}}}}}}}
}

Our constructor can then invoke this method as follows:

Date(int year, String month, int day){
if (this.validYear(year))

this.year = year;
else

throw new IllegalArgumentException("Invalid year in Date.");

if (this.validMonth(this.getMonthNo(month)))
this.month = this.getMonthNo(month);

else
throw new IllegalArgumentException("Invalid month in Date.");

if (this.validDay(day))
this.day = day;

else
throw new IllegalArgumentException("Invalid day in Date.");

}

To check that it works, allow the user to enter only the first three months
(”Jan”, ”Feb”, and ”Mar”). The rest is tedious, and in a real program it
would be designed differently.

7

c©2010 Felleisen, Proulx, et. al. Lab 5

5.3 Understanding Equality

Note: This material is covered in pages 321 - 330 in the textbook. Read it
carefully.

1. Download the file Lab5a.zip. Create a Java Project and add following
files to it’s source directory.

• Account.java

• Checking.java

• Savings.java

• Credit.java

• ExamplesBankAccts.java

We now want to define a method that will determine whether an ac-
count is the same as the given account. We may need such method to
find the desired account in a list of accounts.

Of course, now that we have the abstract class it would be easy to
compare just account number and the name on the account. But,
maybe, we want to make sure that the customer’s data match the data
we have on file exactly - including the balances, the interest rates, and
the minimum balances - as applicable.

The design of the method same is similar to the technique described
in the textbook. The relevant classes and examples that were handed
out in the class can be found in the file Coffee.java. You may want to
look at the code there as you work through this problem.

2. Begin by designing the method same for the abstract class Account.

3. Make examples that compare all kinds of accounts - both of the same
kind and of the different kinds. For the accounts of the same kind
you need both the expected true answer and the expected false
answer. Comparing any checking account with another savings ac-
count must produce false.

4. Now that you have sufficient examples, follow with the design of
the same method in one of the concrete account classes (for example
the Checking class). Write the template and think of what data and
methods are available to us.

8

Lab 5 c©2010 Felleisen, Proulx, et. al.

5. You will need a helper method that determines whether the given
account is a Checking account. So, design the method isChecking
that determines whether this account is a checking account. You need
to design this method for the whole class hierarchy - the abstract
class Account and all subclasses. Do the same to define the meth-
ods isSavings and isCredit.

6. We are not done. This helps with the first part of the same method.
We need another helper method that tells Java that our account is
of the specific type. Here is the method header and purpose for the
checking account case:

// produce a checking account from this account
Checking toChecking();

In the class Checking the body will be just

// produce a checking account from this account
Checking toChecking(){

return this; }

Of course, we cannot convert other accounts into checking account,
and so the method should throw a RuntimeException with the ap-
propriate message. We need the same kind of method for every class
that extends the Account class.

7. Finally, we can define the body of the samemethod in the class Checking:

// produce a checking account from this account
boolean same(Account that){

if (that.isChecking()){
return that.toChecking().sameChecking(this);

} else {
return false;

}
}

That means, we still need the method sameChecking but this only
needs to be defined within the Checking class and can be defined
with a private visibility.

Finish this - with appropriate test cases.

8. Finish designing the same method for the other two account classes.

9

c©2010 Felleisen, Proulx, et. al. Lab 5

Alternative approaches - bad and good

Note 1 - Incorrect alternative:
The method above can be written with two Java language features, the

instanceof operator and casting as follows:

// produce a checking account from this account
boolean same(Account that){

if (that instanceof Checking){
return ((Checking)that).sameChecking(this);

} else {
return false;

}
}

However, this version is problematic and not safe.

If the class PremiumChecking extends Checking, then any object
constructed with a PremiumChecking constructor will be an instance of
Checking and the trouble that can result is illustrated in the example Test-
Same.java. You can make a simple project and run the examples, but we
include the output from the tester for illustration.

Note 2 - A correct alternative:
In the lecture we have introduced another version that also works cor-

rectly. It requires us to add a new method for each class that implements
the common interface.

Lecture Notes for the lecture on equality for unions of classes show
this technique for the classes that represent geometric shapes (IShape,
Circle, Rect, and Combo).

Here the methods were:

// is this shape the same as the given shape?
boolean sameShape(IShape that);

// is this shape the same as the given circle?
boolean sameCircle(Circle that);

// is this shape the same as the given rectangle?
boolean sameRect(Rect that);

// is this shape the same as the given circle?
boolean sameCombo(Combo that);

10

