
Lab 4 c©2010 Felleisen, Proulx, et. al.

4 Methods for Self-Referential Data; Abstracting over
Data Definitions

4.1 Methods for Self-Referential Data.

4.1.1 Problem: Mobiles

This problem continues the work on mobiles we have started during one
of the earlier lectures. The file MobileMethods.java contains the data defi-
nitions, examples of data, and the method countWeights.

A. Make an additional example of mobile data that represents the fol-
lowing mobile (The number of dashes in the struts and lines

B. represents their length):

|
- - - - - - - - - - - -

| |
60 |

blue - - - - - - - - - -
| |
| 40

- - - - - - red
| |

10 |
green 5

red

C. Design the method totalWeight that computes the total weight of
a mobile. The weight of the lines and struts is given by their lengths
(a strut of length n has weight n).

D. Design the method height that computes the height of the mobile.
We would like to hang the mobile in a room and want to make sure it
will fit in.

Make sure you keep updating the TEMPLATE as you go along. (We
have already started you on your way.)

1

c©2010 Felleisen, Proulx, et. al. Lab 4

4.2 Abstracting over Data Definitions.

Review of Designing Methods for Unions of Classes.

A file in a computer can contain either a text, or an image, or an audio
recording. Every file has a name and the owner of the file. There is addi-
tional information for each kind of file as shown in the program Files.java.

Download the file and work out the following problems:

A. Make one more example of data for each of the three classes and add
the tests for the method size that is already defined.

Now design the methods that will deal with the files:

B. Design the method downloadTime that determines how many sec-
onds does it take to download the file at the given download rate.

The rate is given in bytes per second.

C. Design the method sameOwner that determines whether the owner
of this file is the same as the owner of the given file.

Save the work you have done. Copy the file and continue.

Abstracting over Data Definitions: Lifting Fields

Save your work. Possibly start a new project and import the file into it. Al-
ternatively, save the a copy of the file you have been working on in another
folder.

Look at the code and identify all places where the code repeats — the
opportunity for abstraction.

Lift the common fields to an abstract class AFile. Make sure you in-
clude a constructor in the abstract class, and change the constructors in the
derived classes accordingly. Run the program and make sure all test cases
work as before.

Abstracting over Data Definitions: Lifting Methods

For each method that is defined in all three classes decide to which category
it belongs:

A. The method bodies in the different classes are all different, and so the
method has to be declared as abstract in the abstract class.

2

Lab 4 c©2010 Felleisen, Proulx, et. al.

B. The method bodies are the same in all classes and it can be imple-
mented concretely in the abstract class.

C. The method bodies are the same for two of the classes, but are differ-
ent in one class — therefore we can define the common body in the
abstract class and override it in only one derived class.

Now, lift the methods that can be lifted and run all tests again.
Note: You can lift the method sameOwner only if you change its con-

tract. Do so — make sure you adjust the test cases accordingly.

4.3 Complex class hierarchies

Goals

We will focus on understanding the connection between information and
data. The lab handout contains a class diagram and definitions of objects
in this class hierarchy. Your goal is to read the data and explain what in-
formation it represents. In the second part of this lab task you will then
add methods to these classes that allow us to ask questions about the given
data.

Class hierarchy and its data

For this problem you will work with the classes define by the following
Scheme-like data definitions:

/*
;; A Boss is (make-sup String String Number [Listof Employee])
(define-struct sup (name unit tasks peons))

;; A Worker is (make-worker String Number))
(define-struct worker (name tasks))

;; An Employee is one of
;; -- Boss
;; -- Worker

;; A [Listof Employee] is one of
;; -- empty
;; -- (cons Employee [Listof Employee])

and represented by the following class diagram:

3

c©2010 Felleisen, Proulx, et. al. Lab 4

+-----------+
| Emp |<-----------------------------+
+-----------+ |
| | |
+-----------+ |

| |
| |

/_\ |
| |

+-----------------------------------+ |
| | |

+----------------+ +------------------+ |
| Worker | | Boss | |
+----------------+ +------------------+ |
|String name | | String name | |
|int tasks | | String unit | |
+----------------+ | int tasks | |

+--------+ ListofEmp peons | |
| +------------------+ |
| |
v |

+--------------+ |
| ListofEmp |<------------------------+--+
+--------------+ | |
+--------------+ | |

| | |
| | |

/_\ | |
| | |

+--------------------------------+ | |
v v | |

+-----------------+ +-------------------+ | |
| MTListofEmp | | ConsListofEmp | | |
+-----------------+ +-------------------+ | |
+-----------------+ | Emp first +---+ |

| ListofEmp rest +------+
+-------------------+

The following collection of data examples represent some information
this class hierarchy can represent:

// examples/tests for the classes to represent a company employee hierarchy
class Examples {

Examples() {}
Emp wkA = new Worker("A",3);
Emp wkB = new Worker("B",5);
Emp wkC = new Worker("C",6);
Emp wkD = new Worker("D",4);
Emp wkE = new Worker("E",5);
Emp wkF = new Worker("F",2);
Emp wkG = new Worker("G",8);
Emp wkH = new Worker("H",6);

ListofEmp mtlist = new MTListofEmp();

ListofEmp grpAlist = new ConsListofEmp(this.wkC,this.mtlist);
Emp mike = new Boss("Mike", "Group A", 10, this.grpAlist);
ListofEmp secAlist =
new ConsListofEmp(this.mike,

new ConsListofEmp(this.wkD,
new ConsListofEmp(this.wkE,this.mtlist)));

Emp jack = new Boss("Jack", "Section A", 25, this.secAlist);

ListofEmp secBlist =
new ConsListofEmp(this.wkF,
new ConsListofEmp(this.wkG, this.mtlist));

Emp jenn = new Boss("Jenn", "Section B", 15, this.secBlist);

ListofEmp secClist = new ConsListofEmp(this.wkH,this.mtlist);
Emp pat = new Boss("Pat", "Section C", 20, this.secClist);

ListofEmp secDlist = new ConsListofEmp(this.wkB, this.mtlist);

4

Lab 4 c©2010 Felleisen, Proulx, et. al.

Emp pete = new Boss("Pete", "Section D", 10, this.secDlist);

ListofEmp operList =
new ConsListofEmp(this.jack,
new ConsListofEmp(this.jenn,
new ConsListofEmp(this.pat, this.mtlist)));

Emp dave = new Boss("Dave","Operations", 70, this.operList);

ListofEmp financeList =
new ConsListofEmp(this.wkA,
new ConsListofEmp(this.pete, this.mtlist));

Emp anne = new Boss("Anne", "Finance", 20, this.financeList);

ListofEmp ceoList =
new ConsListofEmp(this.dave,

new ConsListofEmp(this.anne,this.mtlist));

Emp meg = new Boss("Meg","CEO", 100, this.ceoList);

A. Think about the information this data represents and describe the
company hierarchy that the given data represents. Draw a chart so
you can easily tell who works for which group, who are the bosses
for a given employee, etc.

Can you tell how many subordinates does Dave have?, who are the
bosses of worker wkA, etc.

B. Design the method countAll that will count all people the given
employee oversees. Include self in the count.

C. Design the method allUnit that produces all subordinates of this
worker. Include self in the list.

D. Design the method isBoss that consumes a name and determines
whether the employee or one of its subordinates is a boss with the
given name.

5

