
Exercise Set 8 c©2010 Felleisen, Proulx, et. al.

8 Abstracting Over the Data Type

Practice Problems

Practice problems help you get started, if some of the lab and lecture material is
not clear. You are not required to do these problems, but make sure you understand
how you would solve them. Solving them on paper is a great preparation for the
exams.

Finish Lab 8 and include all the work in your portfolio.

Pair Programming Assignment

8.1 Problem

Binary Search
Start with a new project and create two files: Algorithms.java and

ExamplesAlgorithms.java.

A. In the ExamplesAlgorithmsmake examples of sorted ArrayLists
of Strings and Integers.

Of course, there is no constructor that creates an ArrayList filled
with values. You need to define a method initData that adds the
values to the initially empty ArrayLists one at a time.

B. Next, design two classes that implement the Comparator interface
in Java Collections — one that compares Strings by lexicographical
ordering, one that compares Integers by their magnitude.

C. Now, design the method binarySearch in the class Algorithms
that consumes the lower index (inclusive), the upper index (exclu-
sive), an ArrayList of data of the type T, a Comparator of the type
T, and an object of the type T and produces the index for this object in
the given ArrayList or throws a RuntimeException if the object
is not found.

1



c©2010 Felleisen, Proulx, et. al. Exercise Set 8

8.2 Problem

Abstracting Over the Data Type
Download the file Expressions.java. It includes the implementation and

some sample tests of the classes that represent an arithmetic expression
where the values can only be integers, and the only operation allowed is
addition.

A. Study the class diagram for this class hierarchy. Extend the example
so that the expressions can also include multiplication.

Hint: Add the class Times.

B. Design the method toString that produces a String representa-
tion of this expression with parentheses surrounding every binary
expression. Define examples that represent the following expressions
and include tests that verify that they have been correctly rendered
as Strings’:

(2 + (3 + 4))
((3 + 5) * ((2 * 3) + 5))

C. We now want to represent relational expressions (that compare two
integer values and produce a boolean value). We limit our choices to
the greater than and equal to comparisons. We also want to represent
boolean expressions, and as well as or.

Change the definitions so that they are parametrized over the type of
data you will use.

The IExp interface is parametrized only over the type of value it rep-
resents when evaluated.

The BinOp class needs to be parametrized over the type of operands
it receives, as well as the type of value it produces.

D. Add the necessary class definitions so you can represent relational and
arithmetic expressions.

Make sure you have examples for each of them, as well as tests for
the eval method.

E. Now design two new classes IntVar and BoolVar that will repre-
sent a variable of the appropriate type in the expression and implements
IExp. It needs to keep track of its name, e.g. x, or width, etc.

2



Exercise Set 8 c©2010 Felleisen, Proulx, et. al.

It should include a method substInt for the class IntVar and the
method substBool for the class BoolVar that consumes a String
and an argument of the appropriate type and produces an instance of
a Value that represents the given value, provided the given String
matches the variable name. In all other cases it just returns this.

Of course, it has to include the method eval. However, this method
should throw an exception, indicating that an expression with a vari-
able in it cannot be evaluated.

F. Design the method noVars, a predicate that verifies that the expres-
sion does not contain any variables.

G. Design the methods substInt and substBool for the entire IExp
class hierarchy, that produces a new IExp in which every occurrence
of Var that matches the given name is replaced with an instance of
the class Value with the given value. Throw an exception if there
is an attempt to substitute a boolean value for the identifier that
represents an int value as well as if there is an attempt to substitute
a int value for the identifier that represents an boolean value.

8.3 Problem

Abstract Data Type
During the lectures we have defined the interface DataSet.java as fol-

lows:

// to represent a collection of data of the type T
interface DataSet<T>{

// add the given item to this data set
void add(T t);

// EFFECT: remove an item from this data set
// return the item that has been removed
// throw a RuntimeException if this data set is empty
T remove();

// return the the number of items in this data set
int size();

}

A. Make examples of ArrayLists of Strings that represent playing
cards. If you do not wish to use playing cards as examples, you can
use any other collection of Strings. In our choice of a simple repre-
sentation we have:

3



c©2010 Felleisen, Proulx, et. al. Exercise Set 8

"Qh" - for queen of hearts
"10s" - for 10 of spades
"3d" - for 3 of diamonds
"Jc" - for jack of clubs
etc.

Again, you will need an initData method to fill the sample lists
with values.

Use these examples to design tests for the next two classes:

B. Design the class Stack that implements the DataSet interface us-
ing an ArrayList to hold the data items and adds and removes the
items at the same end.

This is also known as LIFO — last in, first out organization.

C. Design the class Queue that implements the DataSet interface using
an ArrayList to hold the data items and adds the data items at one
end and removes the items from the other end.

This is also known as FIFO — first in, first out organization.

4


