
Exercise Set 6 c©2010 Felleisen, Proulx, et. al.

6 Abstracting with Function Objects

Portfolio Problems

1. Include the solution of the Lab 6 in your portfolio.

2. Add a few more examples of tests in the Examples class.

3. Define a class ImageSmallerThanAndGivenKind that implements
the ISelectImageFile interface with a method that selects image
files that are small and of the given kind. Allow the user to decide
how small should the images be (measuring the size as the number
of pixels in the image) and allowing the user to choose the kind of
images that should be selected. (All selected images must be of the
same kind.)

Test your class definition on several examples before you use it in
your allSuch, anySuch, and filter methods.

4. Add test cases that will test the methods allSuch, anySuch, and
filterwith several instances of the ImageSmallerThanAndGivenKind
predicate.

Pair Programming Assignment

6.1 Problem

During the lectures we have designed the method filter for a list of
Books, selecting books written by the given author and books published
in the given year.

A. Define the class Book and the classes that represent a list of Books.
You can start with the classes posted on the lecture notes.

B. Define the following interface in your project:

// interface to represent a method compare for books
public interface ICompareBooks{

// does b1 come before b2 in this ordering?
public boolean compare(Book b1, Book b2);

}

1

c©2010 Felleisen, Proulx, et. al. Exercise Set6

C. Define three classes that implement this interface, ordering the books
by the length of the book title (class BookOrderByTitleLength),
author’s names (class BookOrderByAutor), and one more criterion
of your choice.

D. Design the method sort for the classes that represent a list of Books
that uses an instance of a class that implements the ICompareBooks
interface to define the appropriate ordering of the books and pro-
duces the list in the correctly sorted order.

E. Design the method isSorted for the classes that represent a list of
Books that uses an instance of a class that implements the ICompareBooks
interface to determine whether a list of Books is sorted correctly.

Make sure your tests use all three ways of comparing books.

Note: Remember the one task one method rule.

Note: This is just a slight modification of the methods you have al-
ready designed.

6.2 Problem

You will work with a binary search tree that represents a collection of Book
objects. It should be very similar to the binary search trees that had only
integer data.

The class diagram on the next page should help you.

A. Define the classes that represent a binary search tree of Book objects
as shown in the class diagram above.

B. Define the method insert that produces a new binary search tree by
inserting a new Book into the binary search tree, using the ICompareBooks
already defined for this tree.

2

Exercise Set 6 c©2010 Felleisen, Proulx, et. al.

+---------------------+
| abstract class ABST |
+---------------------+

+----------| ICompareBooks order |
| +---------------------+
/ \

+------+ +------------+
+------+ +------------+
+------------+
v
v +---------------+

+------------------------------------+ | Book |
| ICompareBooks | +---------------+
+------------------------------------+ | String title |
| boolean isBefore(Book b1, Book b2) | | String author |
+------------------------------------+ | int price |

+---------------+

C. Design the method getFirst that produces the first Book in the bi-
nary search tree (as given by the appropriate ICompareBooks.

In the Leaf class this method should have the following body:

throw new RuntimeException("No first in an empty tree");

D. Design the method getRest that produces a new binary search tree
with the first Book removed.

In the Leaf class this method should have the following body:

throw new RuntimeException("No rest of an empty tree");

E. Design the method sameTree that determines whether this binary
search tree is the same as the given one (i.e., has matching structure
and matching data in all nodes).

F. Design the method sameData that determines whether this binary
search tree contains the same books as the given tree.

Note: Given the following three trees:

3

c©2010 Felleisen, Proulx, et. al. Exercise Set6

bstA: bstB: bstC: bstD:
b3 b3 b2 b3

/ \ / \ / \ / \
b2 b4 b2 b4 b1 b4 b1 b4

/ / / \
b1 b1 b3 b5

• bstA is the same tree as bstB

• bstA is not the same tree as bstC

• bstA is not the same tree as bstD

• bstA has the same data as bstB

• bstA has the same data as bstC

• bstA does not have the same data as bstD

G. We would like to know whether a binary search tree of books contains
the same data as a list of books. Design the method that allows us to
make this comparison.

Write a short explanation of your design.

Note: You are allowed to introduce new classes or interfaces to solve
this problem.

H. Design a new bstSort method for the classes that represent a list of
books, that first builds a binary search tree from the data in this list,
then converts the binary search tree into a sorted list.

Write a short explanation of your design.

6.3 Problem

In this problem you will start with your solution to Problem 5.4 in the previ-
ous assignment, and use some of the code you have written for the Problem
3.1.

A. Start with a new project that includes your solution to the Problem
5.4.

B. Design a class Capitol that represents a capitol of one of the 48
US states (not Alaska or Hawaii). This class should extend the class
Place. This class should have the following features:

• The field name should be the state abbreviation.

4

Exercise Set 6 c©2010 Felleisen, Proulx, et. al.

• There should be a constructor that consumes the same data in
the same order as you have done for the class City in Problem
3.1, with the list of neighbors as an additional last argument.

• The conversion from the latitude and longitude data to CartPt
should emulate the method toPosn in the Problem 3.1. If you
wish, you can change the size of the Canvas to be 300x300.

C. Make sure all methods you have designed for the class StateMap
including the animation of the routing works correctly.

5

