
Exercise Set 10 c©2010 Felleisen, Proulx, et. al.

10 Heapsort; StressTests

Portfolio Programs: The Java Collections Framework

Read through the documentation for Java Collections Framework library.
Find how you can run the sorting algorithms defined there. Write a sim-
ple program that will test these algorithms and measure their timing in a
manner similar to the last two labs.

Pair Programming Assignment

10.1 Priority Queue

1. Implement the heap-based priority queue algorithm as described in
part 2 of Lab 11.

2. Now implement a simple variant of heapstort as follows:

• In the first step insert the given data into your PriorityQueue,
one item at a time.

• In the second step, remove the data from your PriorityQueue
and insert them into the resulting ArrayList, one at a time.
If you just add each item at the end, you will end up with a
list ordered in descending order. If you wish to get the correct
ordering, insert each item at the index 0.

10.2 Stress Tests

For this problem finish the work on the first problem in Lab 11, especially
focusing on the set of questions and the answers you may find by running
the timing tests.

Part 1
Add your implementation of the heapsort to the sorting algorithms that

will be measured. The skeleton for this is already in place.

Part 2
Run the program a few times with small data sizes, to get familiar with

what it can do. Then run experiments and try to answer the following
questions:

1



c©2010 Felleisen, Proulx, et. al. Exercise Set 10

1. Which algorithms run mostly in quadratic time, i.e. O(n2)?

2. Which algorithms run mostly in O(n.logn) time?

3. Which algorithms use the functional style, using Cons lists?

4. Which algorithm is the selection sort?

5. Why is there a difference when the algorithms use a different Comparator?

6. Copy the results into a spreadsheet. You may save the result portion
in a text editor with a .csv suffix and open it in Excel (or some other
spreadsheet of your choice). You can now study the data and repre-
sent the results as charts. Do so for at least three algorithms, where
there is one of each — a quadratic algorithm and a linear-logarithmic
algorithm.

Produce a report with a paragraph that explains what you learned,
using the Excel charts to illustrate this.

Your report should have a professional look – typed, computer gen-
erated charts, reasonably organized. It does not have to be more than
2 pages long, one page is OK.

10.3 Graph Traversals

In the assignment 5 we have designed methods that displayed the map of
the USA and showed the user the given route from one city to another.
However, we did not know how to find the route.

We now design the method that computes the route from one city to
another in one of three different ways. The algorithms that perform the
search for the route are called Breadth-First Search (BFS), Depth-First Search
(DFS), and Shortest Path (Dijkstra).

The Model

The Graph and User Interactions

Your program needs to represent a graph with places that represent capitals
of the 48 US states. Each place has a name — the name of the state. Two
states are neighbors if they have a common border. You may consider the
four corner states: Colorado Utah, Arizona and New Mexico as connected to

2



Exercise Set 10 c©2010 Felleisen, Proulx, et. al.

each other. The distance between two states is the distance between the
capitals of the two states.

The code in the file GraphAlgoView.java allows the user to type in the
choice for the origin and the destination of the route and choose which
algorithm should be used to find the route. Do not start using it until you are
sure most of your program works (through standalone tests).

Similarly, you can add to the project your old code that shows the route
on Canvas and displays the routing instructions, or animates the route —
but only once the rest of the program works correctly.

The Data

All three algorithms use the same initial data and methods:

• The state map that is a list of places where each place has a list of its
neighbors. (You can reuse the code from Assignment 5, or design a
new list using ArrayList.

• There is a method that computes the distance between two places.
Look up what you have done before and re-use it.

• The desired origin and destination for the route you are trying to find.

• You will need a To Do checklist that contains the places you plan to
look at next, together with some additional information: for each
place, the place you came from and the distance you need to travel
to get to this place. You need to define a new class FromTo to repre-
sent this information. The way this checklist is organized determined
which one of the three algorithms will be used.

We explain later how the distance value should be computed and
used.

• You will need a backtrack list that also contains data of the type FromTo.

• Finally, the route you compute will be either a list of places, or a list
of FromTo data, as long as you can them translate the information it
provides into routing directions.

3



c©2010 Felleisen, Proulx, et. al. Exercise Set 10

The Three Algorithms

The only difference between these three algorithms is in the way they keep
track of the ToDo checklist.

BFS: The Breadth-First Search wants you to look at all nearest neighbors
before you look at neighbors two steps away. It uses a FIFO (first in - first
out) organization for the ToDO checklist. Of course, we know that this is
just a queue. Implement the queue in any way you wish, including using
the Java Collections Framework classes. The distance is ignored here and
can be anything.

DFS: The Depth-First Search wants you to explore a path through the first
neighbor as far as it goes, before trying out another neighbor. It uses a LIFO
(last in - first out) organization for the ToDO checklist. Of course, we know
that this is just a stack. Implement the stack in any way you wish, including
using the Java Collections Framework classes. The distance is ignored here
and can be anything.

Dijkstra: The Shortest Path Search has been invented by Edgar Dijkstra.
Your goal is to keep track of the shortest way known so far to all neigh-
bors that are in the ToDo checklist. This checklist is kept as a priority queue
recording the shortest distance to the To places that we have found so far.
When you find a new way to a node one of three things may happen:

• this place has not been anyone’s neighbor and is not among the nodes
we have included in the ToDo checklist. In this case, we just add it to
the checklist, using the distance to this place to determine the prior-
ity - shorter distances have a higher priority. We already know the
distance to the place we are coming from, we add to it the distance
between that place and its neighbor we are just considering.

• this item has been a neighbor of some other node we have seen al-
ready (there are two ways to get to this place). You need to compute
the distance to this place using the new route (adding the distance to
already computed to the From place to the distance between the From
place and the To place.

If this is a better way (i.e. a shorter one), replace the other way to To
place with this one.

4



Exercise Set 10 c©2010 Felleisen, Proulx, et. al.

When asked to remove an item from the ToDo checklist in the Dijkstra
algorithm, we remove the item with the highest priority — which is the
shortest distance to the origin.

Search Algorithms

Here is the actual description of the three algorithms:

1. Start with an empty To Do checklist. Find in the collection of places
the origin and add it to the To Do checklist, as new FromTo(empty,
origin, 0) i.e., with an empty place as the place we came from and
the distance equal to zero.

Of course, you replace the empty and origin with appropriate ob-
jects that represent this information.

2. Repeat the steps 3. though 4. until one of the conditions in the next
step is satisfied.

3. Remove a FromTo item fromTo from the the To Do checklist. If one of
the condition below holds, stop the loop and take the specified action.

• The To Do checklist is empty, in which case no path has been
found.

• The To place in the fromTo item we remove from the To Do
checklist is the destination. If this is the case, add the fromTo
item to the backtrack list and finish the work with the Backtrack-
ing algorithm

Otherwise, add the fromTo item to the backtrack list and continue as
follows:

4. Add all neighbors M of the To node in the fromTo item to the To Do
checklist as follows:

• Do not add M to the To Do checklist if M has been already visited
(it appears as To place in the backtrack list).

• When adding M to the To Do checklist do the following:

– For the DFS and BFS do not add, if the To Do checklist if the
place M already appears as To place in the To Do checklist.

5



c©2010 Felleisen, Proulx, et. al. Exercise Set 10

– For the SP, add if the place M does not already appear as To
place in the To Do checklist.
If the place M already appears as To place in the To Do check-
list as item fromToAlt, you may need to replace the item
fromToAlt with the item fromTo. More on this later.

Backtracking algorithm

Suppose this is our backtrack list and we are looking for a route from A to F.

0 -> A, A -> B, A -> D, B -> C, D -> E, C -> F

We first remove the item C -> F indicating the route to F on its last
leg went through C and add it to our route. We then look to find how did
we get to C and see that the item B -> C shows we came through B. So,
we remove the item B -> C from the backtrack list and add it to our route.
Repeating the same reasoning, we find that we got to B from A, remove the
item A -> B from the backtrack list and add it to our route. We repeat one
more time, but here we see that there is no place before A and so our route
is complete. We just read it in the correct order:

A -> B -> C - > F

1. Remove the item fromTo where the To place is the destination from
the backtrack list and add it to the final path.

2. Repeat: For the From place P for this item find the fromTo in the
backtrack list where the To place is P.

3. Add it to the final path.

4. If it is the starting node, stop and print the routing, otherwise return
to the step 2.

6


