
Lab 8 c©2009 Felleisen, Proulx, et. al.

8 Abstracting over the Data Type

The goal of this lab is to understand how we can design a more general
programs by defining the common behavior for structured data, such as
lists, using parametrized data types.

Begin by downloading lab8.zip and building a project that contains all
the files as well as the latest version of the tester.jar.

Your project should have the following files:

• Book.java

• Song.java

• Image.java

• ILo.java

• Examples.java

Run the project and make sure all tests passed.

A. The file Examples.java contains tests for the method totalValue in
the classes that represent a list of items of the type <T>.

If you un-comment the test method, the program breaks. Modify the
classes Book, Song, Image so that the method totalValue works
correctly for the classes that represent a list of items of the types Book,
Song, Image and the tests pass.

B. We now want to design the method makeString for the classes that
represent a list of items of the type <T> that produces a readable
String representation of the data in the list.

(a) Design a method makeString for each of the classes Book, Song,
Image that produces a String representing all data in this in-
stance of the class.

(b) Define an interface MakeString<T> that represents the makeString
method for the objects of the type <T>. The method produces a
String representation of the entire object, or of some part of the
object.

1

c©2009 Felleisen, Proulx, et. al. Lab 8

(c) For each of the classes Book, Song, Image design a class that im-
plements the MakeString<T> interface.The method makeString
should produce a String representing all data in this instance
of the class, or some part of it. For example, you may define a
String that contains the book title and the author’s name; the
image title and its size, etc.

(d) Design the method makeStrings for the classes that represent
a list of items of the type <T> that produces a list of Strings,
applying themakeString method in the given instance of the
class that implements the MakeString<T> interface to every
item in the list.
Test your methods on the lists of books, songs, and images, in
the manner similar to that shown in the previous examples.

C. We would like to generalize the method filter we have seen earlier
so that it works for an arbitrary lists of items. The method produces a
list of all items that satisfy some predicate. We modify the ISelect
interface so it can be applied to any type of data:

// a method to decide whether this item
// has the desired property
interface ISelect<T>{
// does this data item have the desired property?
boolean select(T data);

}

Design the method filter that produces a list of all items in the
list (parametrized by the type T that satisfy the given predicate (an
instance of a class that implements the ISelect<T> interface. Test
it by selecting all books that cost less than $25, all songs that play for
more than 180 minutes, and all images with the jpeg file type.

D. The makeStrings method consumed this list of items of the type
T and produced a list of items of the type String.

Think of the Scheme function map. It consumes a list of the type X, a
function of the type X -> Y, and produces a list of items of the type
Y, applying the given function to every item in the list.

So, our makeStrings method is a map from lists of the type T (we
used Songs, Books, and Images) to a list of items of the type String.

2

Lab 8 c©2009 Felleisen, Proulx, et. al.

(a) Design the interface ITransform<T, S> that represents a method
transform that converts the given item of the type T to an item
of the type S. The interface will be parametrized over two (pos-
sibly different) data types, T and S.

(b) Design three classes that implement this interface as follows:
— from the type Book to the type String e.g. the book title
– from the type Image to the type Integer, e.g. the image size,
or width, or height
– from the type Song to the type Boolean, e.g. by the given
artist, or short song...)
Notice that we use the types Integer and Boolean for the
primitive types. These are so called wrapper classes that allow us
to define a primitive data type as if it were a regularly defined
class. Java automatically converts the instances of these classes
to their primitive values, and primitive values or data may be
used anywhere the wrapper class type is required.

(c) Design the method map for the classes that represent a list of
items of the type T. The method header will be:

// produce a list of type S from this list
// of items of the type T by applying
// the given function to every item in this list
ILo<S> map(ITransform<T, S> transform);

Note: Finish this lab and include your work in your portfolio.

3

