
Lab2 c©2009 Felleisen, Proulx, et. al.

2.1 Understanding Data: Simple Classes

In this lab we will focus on understanding data definitions, the distinc-
tion between information and data, how information can be represented
as data, how to interpret the information that some instance of data rep-
resents, and learn to encode the data definitions, as well as construct in-
stances of data in a class based language (like Java).

Look at the following data definitions in the Beginner Student HtDP lan-
guage:

;; Sample data definitions -- simple classes of data

;; to represent a pet
;; A Pet is (make-pet String Num String)
(define-struct pet (name weight owner))

;; Examples of pets:
(define kitty (make-pet "Kitty" 15 "Pete"))
(define spot (make-pet "Spot" 20 "Jane"))

1. Draw the class diagram for this data definition.

2. Convert the data definition to the Beginner ProfessorJ language — in-
cluding the examples of data.

If you are comfortable with this material, you may omit the next two ques-
tions.

3. Convert the following class diagram into Beginner ProfessorJ language:

+--------------+
| Restaurant |
+--------------+
| String name |
| String kind |
| int avgPrice |
+--------------+

4. Convert the following information to data examples for your Restaurant
class.

• Chinese restaurant Blue Moon with average price per dinner $15

• Japanese restaurant Kaimo with average price per dinner $20

• Mexican restaurant Cordita with average price per dinner $12

1

c©2009 Felleisen, Proulx, et. al. Lab2

2.2 Understanding Data: Classes with Containment

Look at the following data definitions in the Beginner Student HtDP lan-
guage:

;; to represent a pet
;; A Pet2 is (make-pet String Num Person)
(define-struct pet2 (name weight owner))

;; to represent a person - a pet’s owner
;; A Person is (make-person String Num Boolean)
(define-struct person (name age male?))

;; Examples of person data:
(define pete (make-person "Pete" 15 true))
(define jane (make-person "Jane" 19 false))

;; Examples of pet2 data:
(define kitty2 (make-pet "Kitty" 15 pete))
(define spot2 (make-pet "Spot" 20 jane))

1. Draw the class diagram for this data definition.

2. Convert the data definition to the Beginner ProfessorJ language — in-
cluding the examples of data.

If you are comfortable with this material, you may omit the next two ques-
tions.

3. Convert the following class diagram into Beginner ProfessorJ language:

+--------------+
| Restaurant2 |
+--------------+
| String name |
| String kind |
| int avgPrice |
| CartPt loc |--+
+--------------+ |

v
+--------+
| CartPt |
+--------+
| int x |
| int y |
+--------+

4. Make new examples for your Restaurant2 class.

2

Lab2 c©2009 Felleisen, Proulx, et. al.

2.3 Understanding Data: Unions of Classes

The class of data that represent pets in the first part is not really sufficient.
We have no idea what kind of pet the animal is. We would like to distin-
guish between the following kinds of pets:

• cats where we record whether it is a short-hair cat of a long-hair cat

• dogs where we record the breed (e.g. Husky, Labrador, etc., or Mutt
— describing an unknown breed)

• gerbils where we need to know whether it is a male of female

We need a data definition for pets that covers all these options. Of
course, we still keep track of the name of the animal and of its owner.

1. Make examples (in English words) of at least one of each kind of pets.

2. Draw a class diagram for the class hierarchy that represents this in-
formation about pets.

3. Design data definitions for this data in the Beginner ProfessorJ lan-
guage.

4. Convert your examples to data.

2.4 Representing Self-Referential Data

We want to trace your ancestry. Write down the name of your mother and
your father, for each of them the name of their mother and father - as far
as you can trace your ancestors. Write unknown when you no longer know
the names. Organize your ancestor information into a tree-like structure -
you are the root, your parents are the two branches, and each set of parents
represents the two branches above their child. (You do not need to use
actual names — feel free to make up the names of your ancestors — but go
back to at least one great-grandparent.)

Design data definition that can be used to represent this information
and then convert the information about your ancestry into data.

3

c©2009 Felleisen, Proulx, et. al. Lab2

Follow the DESIGN RECIPE for data definitions:

• Is the information simple enough to be represented by a primitive
data type?

• Are there several pieces of information that represent one entity? —
if yes, design a class of data with a field for each piece of information.

• Is any of the fields itself a complex piece of data? — if yes, deal with
designing classes for that field as a separate task.

• Are there several variants of data that should be known by a common
name? — if yes, define an interface and have each variant implement
this interface.

• Make sure you write down a comment explaining what each class of
data (or each interface) represents.

• Make sure you make examples of every class you design.

2.5 Designing methods

Design the following methods for the classes that represent pets:

1. Method weighsLessThan that determines whether the pet weighs
less than the given weight limit for flying in the passenger cabin of an
airplane. (Each airline has their own limit.)

2. Method sameOwner that tells us whether the owner of the pet is the
given person. Do this for first two variants of the Pet class.

3. Method changeOwner that produces a new Pet same as the original
one, but with the owner changed to the given one. Do this for first
two variants of the Pet class.

4

