
Lab 11 c©2009 Felleisen, Proulx, et. al.

11 Working with HashMap: Overriding ’equals’

The goal of this lab is to learn to use the professional test harness JUnit. It is
completely separated from the application code. It is designed to report not
only the cases when the result of the test differs from the expected value,
but also to report any exceptions the program would throw. The slight
disadvantage is that it uses the Java equals method that by default only
checks for the instance identity. To use the JUnit for the method tests similar
to those we have done before we need to override the equals any time we
wish to compare two instances of a class in a manner different from the
strict instance identity.

However, each time we override the equals method we should make
sure that the hashCode method is changed in a compatible way. That
means that if two instances are equal under our definition of equals then
the hashCode method for both instances must produce the same value.

We start with learning to use HashMap class. We then see how we
can override the needed hashCode method. Finally, we also override the
equals method to implement the equality comparison that best suits our
problem.

Part 1: Using the HashMap

Our goal is to design a program that would show us on a map the locations
of the capitals of all 48 contiguous US states and show us how we can travel
from any capital to another.

This problem can be abstracted to finding a path in a network of nodes
connected with links — known in the combinatorial mathematics as a graph
traversal problem. You have already seen this problem in your assignments
at least once.

The Data

To provide real examples of data the provided code includes the (incom-
plete) definitions of the class City and the class State.

1. Download the code for Lab 11 and build the project USmap.

2. Download the file of state capitals caps.txt.

3. The project contains an implementations of the Traversal interface
by the class InFileCityTraversal that allows you to read a file

1

c©2009 Felleisen, Proulx, et. al. Lab 11

of City data. The code in the Examples class saves the city data
generated by the InFileCityTraversal into an ArrayList.

Run the code with some of the city data files.

4. The Examples class contains examples of the data for three New
England states (ME, VT, MA) and their capitals. Add the data for
the remaining three states: CT, NH, RI. Initialize the lists of neigh-
boring states for each of these states. Do not include the neighbors
outside of the New England region.

5. Finally, look at the definition of the method toString both in the
City class and in the State class. The class Object defines such
method for all classes, but it is of little use. Comment out the toString
method in the class City and see what happens when you run the
code.

From now on, you should define a toString method for every class
you define, making sure the resulting String is readable and the
fields are clearly identifiable.

We now have all the data we need to proceed with learning about hash
codes, equals, and JUnit.

Using HashMap

The class USmap contains only one field and a constructor. The field is
defined as:

HashMap<City, State> states = new HashMap<City, State>();

The HashMap is designed to store the values of the type State, each
corresponding to a unique key, an instance of a City — its capital.

Note: In reality this would not be a good choice to the keys for a HashMap —
we do it to illustrate the problems that may come up.

1. Go to Java documentation and read what is says about HashMap. The
two methods you will use the most are put and get.

2. Define the method initMap in the class Examples that will add to
the given HashMap the six New England states.

3. Test the effects by verifying the size of the HashMap and by checking
that it contains at least three of the items you have added. Consult
Javadocs to find the methods that allow you to inspect the contents
and the size of the HashMap.

2

Lab 11 c©2009 Felleisen, Proulx, et. al.

Understanding HashMap

We will now experiment with HashMap to understand how changes in the
equals method and the hashCode method affect its behavior.

1. Define a new City instance boston2 initialized with the same val-
ues as the original boston. Now put the state MA again into the table,
using boston2 as the key. The size of the HashMap should now be 7.

2. Now define the equals method in the class City that makes sure
the two cities have the same name, state, zip code, and the same lat-
itude and longitude. Use the given helper method sameDouble to
compare the last two fields. Start the method with:

public boolean equals(Object obj){
City temp = (City)obj; ...

If the given object is of the type that cannot be cast to City the method
will fail at runtime with the ClassCastException.

Now run the same experiment as above. The resulting HashMap still
has size seven. Even though we think the two cities are equal, they
produce a different hash code.

3. Now hide the equals method (comment it out) and define a new
hashCode method by producing an integer that is the sum of the
hash codes of all the fields in the City class.

Now run the same experiment as above. The resulting HashMap still
has size seven. Even though the two cities produce the same hash
code, the HashMap sees that they are not equal and does not confuse
the two values.

4. Now un-hide the equals method so that two City objects that we
consider to be the same produce the same hash code.

When you run the experiment again you will see that the size of the
HashMap remains the same after we inserted Massachusetts with the
boston2 key.

Note: Read in ”Effective Java” a detailed tutorial on overriding equals and
hashCode.

3

c©2009 Felleisen, Proulx, et. al. Lab 11

Part 2: Introducing JUnit

You will now rewrite all your tests using the JUnit4. In the File menu
select New then JUnitTestCase. The tests for each of the methods will then
become one test case similar to this one:

/**
* Testing the method toString

*/
public void testToString(){

assertEquals("Hello: 1\n", this.hello1.toString());
assertEquals("Hello: 3\n", this.hello3.toString());

}

We see that assertEquals calls are basically the same as the test meth-
ods for our test harnesses, they just don’t include the names of the tests. Try
to see what happens when some of the tests fail, when a test throws an ex-
ception, and finally, make sure that at the end all tests succeed.

• Add a method that determines whether the city is South of the given
latitude. Run the tests using the JUnit.

• Add a method that determines whether this city is in the same state
as the given city. Run the tests using the JUnit.

Ask for help, try things — make sure you can use JUnit, so you will not run
into problems when working on the assignment and the final project.

Warning

Try to get as much as possible during the lab. Ask questions when you do
not understand something. The first part of the next assignment asks you to
hand in a complete solution to this lab.

Stack, Queue, Priority Queue, LinkedList; Vector

Look up the documentation for the following Java classes and interfaces:
Stack, Queue, PriorityQueue, List, LinkedList and Vector.
Identify which of them represent interfaces, which represent abstract classes,
and which provide a complete implementation that you can use in your
program. Draw a class diagram that shows the relationship between these
classes and interfaces.

4

