
Exercise Set 11 c©2009 Felleisen, Proulx, et. al.

11 Using Java Collections; JUnit; StressTests

In this assignment you should try to write as little code as possible - using
the Java Collections Framework classes for getting the work done.
Also, you should use JUnit for all tests.

Portfolio Programs: The Java Collections Framework

Finish all the work for Lab 11. (See below)

11.1 HashMap, JUnit

Finish all parts of Lab 11 and hand in the completed work with your part-
ner.

11.2 Stress Tests

Your job is now to be an algorithm detective. The program we give you
allows you to run any of the six different sorting algorithms on data sets
of five different sizes using three different Comparators to define the or-
dering of the data. When you run the program, the time that each of these
algorithms took to complete the task is shown in the console.

To run the program you need to do the following:

• Create a new Java Project in Eclipse (e.g. SortingTests).

• Go to Preferences and choose to add a library then choose Add External
jars to add the file sorting.jar to the project.

• Go to the Run menu, choose Run Configurations, select to make a
new configuration. Name it StressTests then click on the button to
Select main. One of the choices should be sorting.Interactions.
Choose that one. You can now run the program. It will come up with
a GUI with several buttons.

• To set up the timing tests you need to go through three steps:

1. You need to read in the data for the 29470 cities from the file
citydb.txt. The button FileInput opens a file chooser dialog. Se-
lect the citydb.txt file.

1



c©2009 Felleisen, Proulx, et. al. Exercise Set 11

2. Now hit the TimerInput button. It lets you select which algo-
rithms to test, which Comparators to use, and what size data
should be used in the tests.
Start with just a few small tests, to see how the program behaves,
before you decide to run all tests.

3. Now you can run the actual tests by hitting the RunTests button.

You can repeat the last two steps as many times as you want to.

Run the program a few times with small data sizes, to get familiar with
what it can do. Then run experiments and try to answer the following
questions:

1. Which algorithms run mostly in quadratic time, i.e. O(n2)?

2. Which algorithms run mostly in O(n.logn) time?

3. Which algorithms use the functional style, using Cons lists?

4. Which algorithm is the selection sort?

5. Why is there a difference when the algorithms use a different Comparator?

6. Copy the results into a spreadsheet. You may save the result portion
in a text editor with a .csv suffix and open it in Excel (or some other
spreadsheet of your choice). You can now study the data and repre-
sent the results as charts. Do so for at least three algorithms, where
there is one of each — a quadratic algorithm and a linear-logarithmic
algorithm.

Produce a report with a paragraph that explains what you learned,
using the Excel charts to illustrate this.

11.3 William Shakespeare

The Application

Have you ever wondered about the size of Shakespeare’s vocabulary?
For this assignment you will write a program that reads its input from a text
file and lists the words that occur most frequently, together with a count of
how many different words occur in the file. If this program were to run

2



Exercise Set 11 c©2009 Felleisen, Proulx, et. al.

on a file that contains all of Shakespeare’s works, it would tell you the ap-
proximate size of his vocabulary, and how often he uses the most common
words.

Hamlet, for example, contains about 4542 distinct words, and the word
”king” occurs 202 times.

The Problem
Start by downloading the file HW11.zip and making an Eclipse project

that contains these files. Run the project, to make sure you have all pieces
in place. The Examples class uses the tester package as we have done
before.

You are given the file Hamlet.txt that contains the entire text of Ham-
let and a file InFileReader.java that contains the code that generates
the words from the file Hamlet.txt one at a time, via an iterator. Save
the file Hamlet.txt in the Eclipse project directory (where you find the
subdirectories src and bin).

Note: Here you will use the imperative Iterator interface that is a part of Java
Standard Library. Make sure to look up the documentation for this interface and
understand how it works.

Your tasks are the following:

1. Design the class Word to represent one word of Shakespeare’s vocab-
ulary, together with its frequency counter. The constructor takes only
one String (for example the word ”king”) and starts the counter at
one. We consider one Word instance to be equal to another, if they
represent the same word, regardless of the value of the frequency
counter. That means that you have to override the method equals()
as well as the method hashCode().

2. Design the class that implements the Comparator interface, so that
the words can be sorted by frequencies. (Be careful!) When you are
done, place this class definition as the last part of the class definition
of the class Word. This is called an inner class.

Note: In this program there will be two ways of comparing the instances of
the Word class - by the String that it represents and by the counter for the
word that this instance represents.

3



c©2009 Felleisen, Proulx, et. al. Exercise Set 11

3. Include in the class Word the method that allows you to increment
the counter (using mutation), and a method toString that prints
one line with the word and its frequency.

4. Design the class WordCounter that keeps track of all the words we
have seen so far. It should include the following methods:

// records the Word objects generated by the given Iterator
// for each word record the number of ocurrences
void countGivenWords (Iterator it) { ... }

// How many different Words has this WordCounter recorded?
int words() { ... }

// Prints the n most common words and their frequencies.
void printWords (int n) { ... }

Here are additional details:

5. countAllWords consumes an iterator that generates the words and
builds the collection of the appropriate Word instances, with the cor-
rect frequencies.

6. words produces the total count of different words that have been
consumed.

7. printWords consumes an integer n and prints the top n words with
the highest frequencies (using the toString method defined in the
class Word).

Note: The given code expects that you implement the classes as given,
with the same names and methods. It will then check whether your pro-
gram works correctly. That does not mean you do not need to design
tests.

Testing of the Shakespeare Project

Of course, you need to test all methods as you are designing them. Design
the tests in two stages:

1. For the class Word and the the class WordCounter use a technique
similar to what was done in the past assignments, i.e. design a class
Examples with the necessary sample data and all tests.

4



Exercise Set 11 c©2009 Felleisen, Proulx, et. al.

2. Convert all tests into JUnit tests. Hand in both versions.

11.4 Documentation

The projects should contain complete Javadoc documentation that should
produce the documentation pages without warnings. You do not need to
submit the documentation pages.

5


