
Lab 9 c©2009 Felleisen, Proulx, et. al.

9 Javadocs, Using ArrayList, Implementing Stack and
Queue

Goals

The first part of the lab you will learn how to generate Javadoc documenta-
tion, and practice reading Javadoc style documentation for programs.

The second part introduces ArrayList class from the Java Collec-
tions Framework library, lets you practice designing methods that mutate
ArrayList objects.

In the third part of the lab you will learn how to implement the queue
and stack using the Java ArrayList.

9.1 Documentation

For this lab download the following files:

• The file Balloon.java — our sample data class

• The file TopThree.java will be used to practice working with
ArrayList in imperative style (using mutation).

• The Examples.java file that defines examples of all data and defines all
tests.

Create a new Project Lab9 and import into it all files from the zip file.
Import the tester.jar and colors.jar.

Generating Documentation

• Once Eclipse shows you that there are no errors in your files select
Generate Javadoc... from the Project pull-down menu. Select to gen-
erate docs for all files in your project with the destination Lab9/doc
directory. Make sure you select all files for which you wish to gener-
ate the documentation.

You should be able to open the index.html file in the Lab9/doc directory
and see the documentation for this project. Compare the documen-
tation for the class Balloon with the web pages. You see that all
comments from the source file have been converted to the web docu-
ment.

1

c©2009 Felleisen, Proulx, et. al. Lab 9

Observe the format of the comments, especially the /** at the begin-
ning of the comment. If you do not understand the rules, ask the TA
or one of the tutors, or experiment with new comments. From now on
all of your work should have a proper Javadoc style documentation.

• Now use the documentation to see what are the fields in various
classes and what methods have been defined already.

• Define a method isHit in the class Balloon that determines whether
a shot aimed at the given x and y coordinate hits this Balloon. Add
documentation in the Javadoc style. Of course, add tests in the
Examples class. Run the tests, then rebuild the Javadocs and make
sure your documentation shows up correctly.

9.2 Using ArrayList with Mutation

In this part of the lab we will work on lists of balloons, using the Java library
class ArrayList.

Open the web site that shows the documentation for Java libraries

http://java.sun.com/j2se/1.5.0/docs/api/.

Find the documentation for ArrayList.
Here are some of the methods defined in the class ArrayList:

// how many items are in the collection
int size();

// add the given object of the type E at the end of this collection
// false if no space is available
boolean add(E obj);

// return the object of the type E at the given index
E get(int index);

// replace the object of the type E at the given index
// with the given element
// produce the element that was at the given index before this change
E set(int index, E obj);

Other methods of this class are isEmpty (checks whether we have
added any elements to the ArrayList), contains (checks if a given ele-
ment exists in the ArrayList — using the equals method).

2

Lab 9 c©2009 Felleisen, Proulx, et. al.

9.3 Using the ArrayList class

Notice that, in order to use an ArrayList, we have to add

import java.util.ArrayList;

at the beginning of our class file.
The first method you design will be within the class TopThree. The

remaining methods will be defined within the Examples class. Of course,
the tests for all methods will still be inside the Examples class.

1. The class TopThree now stores the values of the three elements in an
ArrayList. Complete the definition of the reorder method. Use
the previous two parts as a model. Look up the documentation for
the Java class ArrayList to understand what methods you can use.

Do not forget to run your tests.

2. Design the method isSmallerThanAtIndex that determines whether
the radius of the balloon at the given position (index) in the given
ArrayList of Balloons is smaller than the given limit.

3. Design the method isSameAsAtIndex that determines whether the
balloon at the given position in the given ArrayList of Balloons
has the same size and location as the given Balloon.

4. Design the method inflateAtIndex that increases the radius of a
Balloon at the given index by 5.

5. Design the method swapAtIndices that swaps the elements of the
given ArrayList at the two given positions (indices).

Note 1: We have used the words position in the ArrayList and index in
the ArrayList interchangeably in the previous descriptions of tasks. Both
are commonly used and we wanted to make sure you get used to both ways
of describing an element in an ArrayList.

Note 2: Of course, the tests for these methods will also appear in the
Examples class. Make sure that every test can be run independently of
all other tests. To do this, you must initialize the needed data inside of the
test method, evaluate the test by invoking the appropriate checkExpect
method, and reset the data to the original state after the test is completed.

3

c©2009 Felleisen, Proulx, et. al. Lab 9

9.4 Implementing Stack and Queue using ArrayList

We can easily implement the IQueue and the Stack interfaces using the
Java ArrayList. The behavior of the stack and queue is provided by the
corresponding interfaces. The programmer that needs to work with one
of these data structures can write the entire program referring only to the
methods given by the interface for that data structure. Later, the program-
mer can decide which implementation of the desired data structure will be
used when running the program.

The interface that describes the behavior of a data structure is called Ab-
stract Data Type or ADT. The goal of this lab is to see that we can have
several different implementations of an ADT. We have seen the first vari-
ants in the previous lab and in the homework assignment.

1. Recall the definition of the IQueue interface:

// Interface that constructs a queue
public interface IQueue<T>{

// Is this an empty queue?
public boolean isEmpty();

// Adds an Object to the queue
public IQueue<T> enQueue(T t);

// Returns the element at the head of the list
public T element();

// Returns the resulting queue after the head of the list
// has been removed
public IQueue<T> deQueue();

}

Start with the following partial class definition:

// A class that implements a queue
public class ArrQueue<T>{

// The ArrayList to hold the data
ArrayList<T> arlist;

ArrQueue(){}

// Is this an empty queue?
public boolean isEmpty(){ }

// Adds an Object to the queue
public IQueue<T> enQueue(T t){ }

4

Lab 9 c©2009 Felleisen, Proulx, et. al.

// Returns the element at the head of the list
public T element(){

... throw an exception if there are no elements...
}

// Returns the resulting queue after the head of the list
// has been removed
public IQueue<T> deQueue(){ }

}

Implement the four methods and run the tests for a queue of Strings.

2. Here is the definition of the IStack interface:

// Interface that constructs a stack
public interface IStack<T>{

// Is this an empty stack?
public boolean isEmpty();

// Adds an Object to the top of the stack
public IStack<T> push(T t);

// Returns the element at the the top of the stack
public T peek();

// Returns the resulting stack after the top of the stack
// has been removed
public IStack<T> pop();

}

Start with the following partial class definition:

// A class that implements a stack
public class ArrStack<T>{

// The ArrayList to hold the data
ArrayList<T> arlist;

ArrStack(){}

// Is this an empty stack?
boolean isEmpty(){ }

// Adds an Object to the top of the stack
public IStack<T> push(T t){ }

// Returns the element at the the top of the stack
public T peek(){

...... throw an exception if empty
}

5

c©2009 Felleisen, Proulx, et. al. Lab 9

// Returns the resulting stack after the top of the stack
// has been removed
public IStack<T> pop(){

...... throw an exception if empty
}

}

Implement the three methods and run the tests for a stack of Strings.

6

