
Lab 8 c©2009 Felleisen, Proulx, et. al.

8 Understanding Libraries

8.1 Reading JavaDocs

The documentation for Java projects can be quite extensive. Reading just
the comments in the code is difficult. Furthermore, when a library is dis-
tributed, one does not always have access to source on hand. In those cases,
it become imperative that quality documentation is accessible in a human
readable format.

To make it possible to generate readable and searchable documentation
for Java programs, the programmers write specially formatted comments
in the Javadoc style. Sun, the developer of Java, provides a program that
reads the documentation and generates nicely formatted web pages that
contain all “well-formatted” comments provided by the programmer.

On the main web page find the link to the documentation for the tester
package. You will see right away that it consists of three interfaces, six reg-
ular classes and two Exception classes. There is a comment next to each
of these. On the left is a list of all classes, interfaces, and exceptions and
each name is a link to the detailed description of that particular item.

Follow the link to the interface ISame. The code for this interface
has been written as follows:

package tester;

/**
* An interface to represent a method that compares

* two objects for user-defined equality.

*
* @author Viera K. Proulx

* @since 30 May 2007

*/
public interface ISame<T>{

/**
* Is this element the same as that?

* @param that element

* @return true is the two elements are the same

* (by our definition)

*/
public boolean same(T that);

}

Now look at the class IllegalUseOfTraversalException. It

1

c©2009 Felleisen, Proulx, et. al. Lab 8

shows you that programmers can define a new class of exceptions, specific
to the situations that may be encountered in their programs. The content
of a class that extends java.lang.RuntimeException is quite standard
and there is not much to see there.

We will now look at where this exception is needed. Follow the link to
the interface Traversal. Did you notice that the names of interfaces
on the left hand side bar are written in italics?

Here is the code for the interface Traversal:

package tester;

/**
* An interface that defines a functional iterator

* for traversing datasets

*
* @author Viera K. Proulx

* @since 30 May 2007

*/
public interface Traversal<T> {

/**
* Produce true if this

* <CODE>{@link Traversal Traversal}</CODE>

* represents an empty dataset

*
* @return true if the dataset is empty

*/
public boolean isEmpty();

/**
* <P>Produce the first element in the dataset represented

* by this <CODE>{@link Traversal Traversal}</CODE> </P>

* <P>Throws <code>IllegalUseOfTraversalException</code>

* if the dataset is empty.</P>

*
* @return the first element if available -- otherwise

* throws <code>IllegalUseOfTraversalException</code>

*/
public T getFirst();

/**
* <P>Produce a <CODE>{@link Traversal Traversal}</CODE>

* for the rest of the dataset </P>

* <P>Throws <code>IllegalUseOfTraversalException</code>

2

Lab 8 c©2009 Felleisen, Proulx, et. al.

* if the dataset is empty.</P>

*
* @return the <CODE>{@link Traversal Traversal}</CODE>

* for the rest of this dataset if available - otherwise

* throws <code>IllegalUseOfTraversalException</code>

*/
public Traversal<T> getRest();

}

Next week you can use this as a guide for writing your own JavaDoc
documentation.

8.2 Annotations and main Methods

As many of you have already seen from demos given by Weston Jossey,
annotations can be used to leverage the Tester without the need for you
to put all of your test cases within a single @Example class. Annotations
in Java (and other languages such as C#), allow programmers to use meta-
data to describe the behavior or nature of a given class, method, or variable.
A real world example of humans using annotations would be when doctors
and nurses will use “annotations” in the form of different symbols to mark
mild, critical, and fatal injuries during a crisis scenario.

The Tester provides a programmer two annotations: @Example and
@TestMethod. Utilizing these annotations is quite simple.

@Example
public class NumExamples{

public NumExamples(){}

@TestMethod
public void funWithNumbers(Tester t){

t.checkExpect(5, 5);
t.checkFail(10, 5);
t.checkExpect(5 + 5, 10);

}
}

When the Tester is run via tester.Main (as we have been doing all semester),
the Tester is able to find any classes that have the @Example annotation, ex-

3

c©2009 Felleisen, Proulx, et. al. Lab 8

maine them for any methods with the @TestMethod annotation, and then
run them accordingly. It is important to note that because of this flexibility,
we now have the ability to test private fields by writing test cases within
our respective classes.

import tester.*;
//Represents a non-empty list
@Example
public class ConsList<T> implements IList<T> {

private T first;
private IList<T> rest;

public ConsList(T first, IList<T> rest) {
this.first = first;
this.rest = rest;

}

//Adds a new element to the list
public IList<T> add(T t) {

return new ConsList<T>(t, this);
}

//Checks to see if this.first is equal to the
//given element, or if this.rest contains the
//given element.
public boolean contains(T t){

ISame<T> comp = (ISame<T>) first;
if(comp.isSame(t))

return true;
else

return this.rest.contains(t);
}

@TestMethod
private void testFirstAndRest(Tester t){

ConsList<Integer> cons =
new ConsList<Integer>(

5, new MtList<Integer>());
t.checkExpect(cons.first, 5);
t.checkExpect(cons.rest,

4

Lab 8 c©2009 Felleisen, Proulx, et. al.

new MtList<Integer>());
}

}

When we have multiple classes with test cases, we do not always wish
to run all of our test cases all at once. In these scenarios, it becomes ac-
ceptable to use main methods to run individual Example classes with the
tester.

public static void main(String[] args){
//This will run with normal reporting enabled
Tester.run(new ConsExamples());
//This will run with verbose reporting enabled
Tester.runFullReport(new ConsExamples());

}

You can now invoke your main method a number of different ways;
however, if you are inside of Eclipse, you can either set your run configu-
ration to point to your main class, or, while you have the class with your
main method open, go to: Run – Run As – Java Application

What advantage or disadvantage does runFullReport give you? For
more information, go to the Javalib website and check out the documenta-
tion.

8.3 Implementing Traversals

Create a new project in Eclipse called Lab8. Add to it an interface we used
before, the ISelector interface. Also, add the tester library, just as you
have done with every other project.

In the past we have designed classes that represent recursively con-
structed lists of arbitrary items. However, every time we wanted to add
some functionality to these classes, we had to modify all three classes. This
works well when we are the sole users of our program. If we want to dis-
tribute our program as a library, we need to equip the classes with methods
that will allow the users that come later on to manipulate the data con-
tained in this list.

The Traversal interface has been designed to supply the methods we
may need for any program that needs to look in some orderly manner at
the data contained in a list.

We would like to - again - implement our filter method. We will
need again the ISelector interface:

5

c©2009 Felleisen, Proulx, et. al. Lab 8

// Our usual Selector interface
interface ISelector<T>{

boolean pick(T t);
}

We can now design the classes that represent lists of data:

//Generic List Union
interface ILo<T> extends Traversal<T>{

// Note that isEmpty(), getFirst() and getRest()
// are also added to this interface by extending
// the ’implementation’ of Traversal

}

//Represents an Empty List of T
class MtLo<T> implements ILo<T>{

// Basic Constructor
public MtLo(){}

// Traversal functions so that things like ’filter’ can be
// written without disturbing the list classes
public boolean isEmpty(){ return true; }

public T getFirst(){
throw new IllegalUseOfTraversalException(
"No first element in an empty list"); }

public Traversal<T> getRest(){
throw new IllegalUseOfTraversalException(
"No remaining elements in an empty list"); }

}

//Represents a non-empty list of T
class ConsLo<T> implements ILo<T>{

private T first;
private ILo<T> rest;

// Basic Constructor
public ConsLo(T first, ILo<T> rest){

this.first = first;
this.rest = rest;

}

// Traversal functions so that things like ’filter’

6

Lab 8 c©2009 Felleisen, Proulx, et. al.

// can also be written without disturbing the list classes
public boolean isEmpty(){ return false; }

public T getFirst(){ return this.first; }

public Traversal<T> getRest(){ return this.rest; }
}

It looks like we have not achieved much. However, we can now define
the filter method outside of the classes that represent the list of items.
If we wish to build a library, we do not know what methods will the user
need. We need to provide a clean interface for the user, so that the user can
add new methods that will deal with the data contained in the list.

We place these methods in a separate class we call Algorithms.

//First attempt at a generic filter algorithm
class Algorithms{

// Filter the Traversal based on the given Selector
public <T> ILo<T> filter(Traversal<T> tr,

ISelector<T> choose){

if(tr.isEmpty())
return new MtLo<T>();

else
if(choose.pick(tr.getFirst()))

return new ConsLo<T>(tr.getFirst(),
filter(tr.getRest(), choose));

else
return filter(tr.getRest(), choose);

}
}

Add these classes and interfaces to your project. Make examples of lists
of Strings and design a couple of test cases for these methods. You do not
have to complete all tests, but make sure you understand what is going on
and how the method in the Algorithms class can be used.

8.4 F.I.F.O. Queue

For the past seven labs, we have primarily worked with only one type of
data structure, lists. Now, it is time to take what we have learned about ma-
nipulating lists and apply them to other data structures (such as Doubly-
Linked-Lists, Binary Search Trees, Queues, Stacks, etc.). You will begin to

7

c©2009 Felleisen, Proulx, et. al. Lab 8

notice that many data structures are built on the top of other data struc-
tures, so it is important to build a strong foundation before moving on to
more complicated structures.

A queue is something that can be found in every day life. When you
wait in line at your favorite fast-food restaurant, you are a part of a real life
first in first out (FIFO) queue. A FIFO queue behaves exactly as we would
expect it to. The first item that enters the queue is the first item that will get
to leave the queue.

We have provided you with the following files:

1. IQueue.java

2. Inspectable.java

3. Inspector.java

Each of these represents an interface which you will need to implement
to make your code operational. The IQueue interface is your template for
building queues. Read the comments to understand the purpose of each
method.

Implement the IQueue interface using the same style we have used for
lists (there should be an empty class, as well as a non-empty class). Write
examples to fully exercise your methods. Remember that deQueue should
return the least-recent element that has been added to the queue.

8.5 The Fuzz

The following problem is meant to challenge your problem solving skills.
Examine the problem, discuss possible solutions with your partner(s), and
agree on the best way to tackle the problem. Use your notes from Monday’s
lecture to help guide you with the visitor pattern.

Cedar Point is a roller coaster theme park located in Sandusky, Ohio. As
“America’s roller-coast”, Cedar Point is recognized as one of the key spots
for roller coaster enthusiasts to frequent. However, as with any other venue
with tens of thousands of visitors, there are bound to be some “unsavory”
characters.

Cedar Point has ParkPolice that monitor the Queues for any poten-
tial felons that may have entered into the park. Unfortunately, a police
officer has no way to actually go through the Queues to examine the indi-
viduals, because the crowds are too thick to move through.

Step One: Extend the IQueue interface with the Traversal interface. Im-
plement the methods as needed. This should be simple enough if your

8

Lab 8 c©2009 Felleisen, Proulx, et. al.

Queue implementation was done in a clear manner. Write test cases to ver-
ify that your methods behave as expected.

Step Two:

Sometimes the easiest way to understand a problem
is to make up some "mock" conversation that simulates
the behavior of some action or sequence of actions.
The Visitor pattern is not the simplest of techniques
to understand, but a little "dialogue" can turn that
confusion clear as mud.

This dialogue is a representations of steps two and
three.

Police Chief: Hey Queue Inspector! Wake up.
We’ve got felons on the loose!
Inspect this queue and check
to see if any felons are queueing.
If they are, boot them out. You
can tell that a Person is a felon
if they are wearing pinstripes.

Queue Inspector: No problem Chief. Hey Queue
(ok... he’s a delusional inspector),
give me some information about the
people in your queue.

Queue: Alright. This person is at the
front of this queue, and here’s
the rest of this queue. I
expect you to give me the result
of your search after you’re done.

Queue Inspector: Thank you. I see the first person
is a felon. They will not be in the
queue after I’m done... Hey, Rest
Of The Queue, give me some
information about the people in your
queue.

9

c©2009 Felleisen, Proulx, et. al. Lab 8

ROT-Queue: Alright. This person is at the
front of this queue, and here’s
the rest of this queue. I
expect you to give me the result
of your search after you’re done.

Queue Inspector: Thank you. Ah! Someone who isn’t
a felon! I shall keep you in the
queue. Hey, Rest Of The Rest Of
The Queue, give me some information
about the people in your queue...

I will leave it up to you to finish the story!
The conversation has to end at some point. The
question is where!

Write a ParkPolice class that implements the Inspector interface.
In addition, extend your IQueue with the Inspectable interface. Don’t
worry about your two Queue classes right now, we just want to extend the
interface so we can see our method availability with auto-complete.

A ParkPolice class has no fields, and two public methods. The role of
a ParkPolice instance is to uncover any Persons in the park that may be
wearing pinstripes (which is a sure sign they are a steroid user!). In our Vis-
itor pattern, our ParkPolice instance will be visiting a Queue instance.

Question... Can you name at least five cheaters who have played for
the Yankees in the past decade?

Take note that your Person class can be structured and handled how-
ever you want, so long as a ParkPolice officer can discern that the Person
is not a felon.

Step Three: Finish implementing your Queue classes so that it satis-
fies the Inspectable interface. When you do this, use your Traversal
methods to obtain the proper “first” and “rest”. While this may seem re-
dundant inside of a Queue, think about why this added step might save
headaches if you were to implement Inspectable for a Binary Search
Tree. Hmm.... That sounds like a nice homework problem...

As always, make sure you have examples that fully exercise your code.
If you are confused about how to test steps two or three, make sure to ask

10

Lab 8 c©2009 Felleisen, Proulx, et. al.

a TA or tutor for assistance in understanding the visitor pattern.

8.6 Javadocs

If you have some time left, convert all documentation for the classes you
designed into the Javadoc style and generate the web pages of documen-
tation. In the Project menu select Generate Javadoc and then select which
files should be used to generate the documentation. See where you have
warnings and fix the problems.

11

