
Lab 7 c©2009 Felleisen, Proulx, et. al.

7 Abstracting over the Data Type

The goal of this lab is to understand how we can design a more general
programs by defining the common behavior for structured data, such as
lists, using parametrized data types.

Begin by downloading lab7.zip and building a project that contains all
the files as well as the latest version of the tester.jar.

Your project should have the following files:

• Book.java

• Song.java

• Image.java

• ILo.java

• Examples.java

Run the project and make sure all tests passed.

A. The file Examples.java contains tests for the method totalValue in
the classes that represent a list of items of the type <T>.

If you un-comment the test method, the program breaks. Modify the
classes Book, Song, Image so that the method totalValue works
correctly for the classes that represent a list of items of the types Book,
Song, Image and the tests pass.

B. We now want to design the method makeString for the classes that
represent a list of items of the type <T> that produces a readable
String representation of the data in the list.

• Design a method makeString for each of the classes Book, Song,
Image that produces a String representing all data in this in-
stance of the class.

• Define a common interface MakeString<T> that represents the
makeString method for the objects of the type <T>.

• Design the method makeString for the classes that represent a
list of items of the type <T>.
Test your methods on the lists of books, songs, and images, in
the manner similar to that shown in the previous examples.

1

c©2009 Felleisen, Proulx, et. al. Lab 7

C. We would like to design the method filter for the lists of items.
The method produces a list of all items that satisfy some predicate.
We could use the following interface:

// a method to decide whether this item
// has the desired property
interface ISelectable<T>{
// does this data item have the desired property?
boolean pick();

}

Design the method filter that produces a list of all items in the
list that satisfy this predicate. Test it by selecting all books that cost
less than $25, all songs that play for more than 180 minutes, and all
images with the jpeg file type.

D. This is getting very tedious and is not flexible enough. There is no
easy way to change the way we select the desired items.

The filter function in Scheme had the following definition:

;; filter: (X -> Boolean) (Listof X) -> (Listof X)
;; to construct a list from all items in alox
;; for which p holds
(define (filter p alox) ...)

The Scheme filter function consumes a predicate p, a function that
determines for every item in the list whether it should be included in
the resulting list.

So, at different times we can supply a different predicate.

We try to do the same in Java. Start by defining the interface

// a method to decide whether the given item
// has the desired property
interface ISelector<T>{
// does the given item have the desired property?
boolean pick(T t);

}

This represents a method that does not depend on the class where the
method is defined. It consumes an item and determines whether it
satisfies the predicate.

2

Lab 7 c©2009 Felleisen, Proulx, et. al.

Design the method filter2 in the classes that represent the list of
items of the type <T> that consumes an instance of the predicate of
the type ISelector<T> and produces a list of items that satisfy the
predicate.

The problem is that we do not know how to test this method. We need
an instance of the class that implements the ISelector interface.

Define the following class:

// a method to decide whether the given book
// costs less than $20
class CheapBook implements ISelector<Book>{

// does the given book cost less than $20?
boolean pick(TBook b){
return b.price < 20;

}
}

It is indeed a strange class — it contains a method, but no data. Its
only purpose is to define an object that can invoke the desired method.
We call it function object.

In the Examples class make an instance of the class and use it as an
argument for the tests for the method filter2.

We will extend this example further during the next couple of days.

3

