
Design Recipes: Lab 3 c©2008 Felleisen, Proulx, et. al.

3.1 Design Recipe for Methods: Simple Classes

We use the following classes to illustrate the use of the DESIGN RECIPE FOR

METHODS:

+----------------+
| Photo |
+----------------+
| String name |
| String kind |
| int width |
| int height |
| int bytes |
| Date date |--------------------+
| ClockTime time |-+ |
+----------------+ | |

v v
+------------+ +------------+
| ClockTime | | Date |
+------------+ +------------+
| int hour | | int year |
| int minute | | int month |
+------------+ | int day |

+------------+

Here are some some examples of the information we wish to represent:

• Picture of a river (jpeg) that is 3456 pixels wide and 2304 pixels high,
using up 3,614,571 bytes

— taken on September 23, 2007 at 9:50 am.

• Picture of a mountain (jpeg) that is 2448 pixels wide and 3264 pixels
high, using up 1,276,114 bytes

— taken on November 11, 2007 at 11:30 am.

• Picture of a group of people (gif) that is 545 pixels wide and 641 pixels
high, using up 13,760 bytes

— taken on November 11, 2007 at 9:30 pm.

• Picture of a plt icon (bmp) that is 16 pixels wide and 16 pixels high,
using up 1334 bytes

— taken on September 23, 2007 at 11:30 pm.

1

c©2008 Felleisen, Proulx, et. al. Design Recipes: Lab 3

Note: Make sure you understand the data definitions, can translate these
examples to data, and converesely, translate any instance of data defined
for these classes into the information the data represents.

Recall from the lectures that in a class based language every method is
defined in a class that is most relevant, it is then invoked by the instance of
that class, and this instance becomes the first argument for the method.

Below is an example of the design of a method that computes the num-
ber of pixels in a photo image:

• Step 1: Problem analysis and data definition.

The method deals with Photos and so it needs to be defined in the
class Photo. Each instance of a Photo has all the information we
need to solve the problem - we do not need any additional data to be
given. The result is an integer.

We will use the following data in our examples. For your work add
at least one more instance of each class.

// Examples for the class ClockTime
ClockTime ct1 = new ClockTime(21, 50);
ClockTime ct2 = new ClockTime(11, 30);
ClockTime ct3 = new ClockTime(9, 50);

// Examples for the class Date
Date d1 = new Date(2007, 9, 23);
Date d2 = new Date(2007, 11, 7);
Date d3 = new Date(2007, 9, 25);

// Examples for the class Photo
Photo river = new Photo("River", "jpeg", 3456, 2304,

3614571, this.d1, this.ct3);
Photo mountain = new Photo("Mountain", "jpeg", 2448, 3264,

1276114, this.d2, this.ct2);
Photo people = new Photo("People", "gif", 545, 641,

13760, this.d2, this.ct1);
Photo icon = new Photo("PLTicon", "bmp", 16, 16,

1334, this.d1, this.ct2);

• Step 2: The purpose statement and the header.

// to compute the number of pixels in this photo
int pixels(){...}

2

Design Recipes: Lab 3 c©2008 Felleisen, Proulx, et. al.

• Step 3: Examples.

people.pixels() ---> 349345
icon.pixels() ---> 256

• Step 4: The template.

int pixels(){
... this.name ... --- String
... this.kind ... --- String
... this.width ... --- int
... this.height ... --- int
... this.bytes ... --- int
... this.date ... --- Date
... this.time ... --- ClockTime

We will only need this.width and this.height.

• Step 5: The method body.

// to compute the number of pixels in this photo
int pixels(){

return this.width * this.height;
}

• Step 6: Tests.

ProfessorJ provides a special way of running the tests. A check ex-
pression

check test method invocation expect expected test result

produces the test result as a boolean value and all test results are
reported in a separate display. The following code:

// Tests for the method pixels:
boolean testPixels =

(check this.people.pixels() expect 349345) &&
(check this.icon.pixels() expect 256);

shows the tests for our method.

3

c©2008 Felleisen, Proulx, et. al. Design Recipes: Lab 3

3.2 Design Recipe for Methods: Self-Referential Data

Let us now consider the class hierarchy that represents a list of photo im-
ages. We first design the method that counts the images in our list. (We use
the simpler version of the class Photo.)

Note: Of course, you will quickly realize that this method will look the
same regardless of what are the pieces of data contained in the list. We will
address that issue later on, once we are comfortable with dealing with lists
that contain specific items.

The class diagram for a list of photo images is shown below:

+--------------+
| IListOfPhoto |<----------------+
+--------------+ |
+--------------+ |

| |
/ \

------------------------ |
| | |

+---------------+ +-------------------+ |
| MTListOfPhoto | | ConsListOfPhoto | |
+---------------+ +-------------------+ |
+---------------+ +-| Photo first | |

| | IListOfPhoto rest |----+
| +-------------------+
v

+----------------+
| Photo |
+----------------+
| String name |
| String kind |
| int width |
| int height |
| int bytes |
+----------------+

Design Recipe for a method definition for self-referential data

Below is an example of the design of a method that counts the number of
pictures in a list of photo images.

The method deals with IListOfPhotos. We have an interface
IListOfPhotos and two classes that implement the interface:

4

Design Recipes: Lab 3 c©2008 Felleisen, Proulx, et. al.

MTListOfPhotos and ConsListOfPhotos. When the DESIGN RECIPE

calls for the method purpose statement and the header, we include the pur-
pose statement and the header in the interface IListOfPhotos and in all
the classes that implement the interface.

Including the method header in the interface serves as a contract that
requires that all classes that implement the interface define the method with
this header. As the result, the method can be invoked by any instance of a
class that implement the interface - without the need for us to distinguish
what is the defined type of the object.

We can now proceed with the DESIGN RECIPE.

• Step 1: Problem analysis and data definition.

The only piece of data needed to count the number of elements in a
list is the list itself. The result is an integer.

We will use the following data in our examples. For your work add
at least one more instance of each class.

// Examples for the class Photo
Photo river =

new Photo("River", "jpeg", 3456, 2304, 3614571);

Photo mountain =
new Photo("Mountain", "jpeg", 2448, 3264, 1276114);

Photo people =
new Photo("People", "gif", 545, 641, 13760);

Photo icon =
new Photo("PLTicon", "bmp", 16, 16, 1334);

IListOfPhotos mtlist = new MTListOfPhotos();

IListOfPhotos list1 =
new ConsListOfPhotos(this.river, this.mtlist);

IListOfPhotos list2 =
new ConsListOfPhotos(this.mountain,
new ConsListOfPhotos(this.people,
new ConsListOfPhotos(this.icon, this.mtlist)));

• Step 2: The purpose statement and the header.

// to count the number of pictures in this list of photos
int count(){...}

5

c©2008 Felleisen, Proulx, et. al. Design Recipes: Lab 3

In the interface IListOfPhotos we write:

// to count the number of pictures in this list of photos
int count();

indicating there is no definition for this method.

We now have to design the method separately for each of the two
classes.

• Step 3: Examples.

We make examples for the empty list, a list with one element and a
longer list:

mtlist.count() ---> 0
list1.count() ---> 1
list2.count() ---> 3

• Step 4: The template.

We need to look separately at the two classes that implement the
method.

class MTListOfPhotos: The class has no member data and there
is no other data available. It is clear that the method will always pro-
duce the same result, the value 0.

We can finish the steps 4. and 5. right away — the method body
becomes:

// to count the number of pictures in this list of photos
int count() {
return 0;

}

The template for the class ConsListOfPhotos includes the two fields:
this.first and this.rest. However, just as in HtDP, we recog-
nize that this.rest is a data of the type IListOfPhotos and so it
can invoke the method count that is now under development. The
template then becomes:

6

Design Recipes: Lab 3 c©2008 Felleisen, Proulx, et. al.

In the class ConsListOfPhotos:
TEMPLATE:

int count(){
... this.first ... --- Photo
... this.rest ... --- IListOfPhotos

... this.rest.count() ... --- int

Recall the purpose statement for the method count:

// to count the number of pictures in this list of photos

The purpose of the method invocation this.rest.count() then
becomes:

// to count the number of pictures
// in the rest of this list of photos
// ---------------------

When designing methods for self-referential data, make sure you say
out loud (or at least understand clearly) the purpose statement as ap-
plied to the self-referential method invocation.

• Step 5: The method body.

We have already finished the method body for the class MTListOfPhotos.
In the class ConsListOfPhotos the method body is:

// to count the number of pictures in this list of photos
int count(){

return 1 + this.rest.count();
}

• Step 6: Tests.

We can now convert our examples into tests:

// Tests for the method count:
boolean testPixels =

(check this.mtlist.count() expect 0) &&
(check this.list1.count() expect 1) &&
(check this.list2.count() expect 3);

7

