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12 Just when you thought you were done with sorting

I know, I know. By now, you are probably sick and tired of sorting algo-
rithms. You probably want to scream out “No more sorting algorithms!”.
Go ahead. Do it. It’s therapeutic.

(Did you do it yet?)

Now, you are probably also asking yourself “What’s the point of learn-
ing all these sorting algorithms if they all do the same thing!?!?” Don’t
worry. This is a common question. So common, in fact, that Randall Munroe,
of XKCD fame, felt that it was necessary to add it to the FAQ page of his
website:

(from http://xkcd.com/about/)

Which sorting algorithms should I use? They taught me so
many.

This is tricky. Most of what they teach you in school is just as an ex-
ample of how to think about algorithms; 99% of the time you shouldn’t
worry about optimizing your sorts. Just learn to implement Quicksort
(which is very good) and use that without fretting about it too much.
People overfocus on efficiency over clarity and simplicity. And most
of the time the environment you’re coding in will have an efficient sort
function built-in anyway.

Note: If you’re interviewing for a company for a position with a focus
on algorithms, the above is not an excuse not to know your stuff.

Randall has some good words of advice. Here are some reasons why
knowing sorting algorithms is important:

1. A large part of computer science involves knowing how to under-
stand and analyze algorithms. You’ll see algorithms no matter what
area of computer science you are interested in. Sorting algorithms are
relatively easy to learn, which is why they are often used in introduc-
tory courses.

2. You are pretty much guaranteed to be asked a sorting question at
some point if you ever interview for a job at a software company.
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Finally, the main reason to learn sorting algorithms is that it impresses
the ladies:

(Girls, it works doubly well on guys.)

So Randall is right in that people often overfocus on efficiency. Un-
fortunately for you, that is no excuse not to know about efficiency.
Fortunately for you, in this lab, we will examine the running time
of various sorting algorithms. We will use some sorting algorithms
that you have already seen, like selection sort and insertion sort, and
we will also implement some new sorting algorithms, like quicksort
and tree sort. We will time how long it takes each algorithm to sort
different types of data and then we will analyze the results to de-
termine what works well and what doesn’t work so well in differ-
ent situations. Note that, in this lab, we will focus only on sorting
ArrayLists using mutation.

12.1 Setup

Take the following steps to setup the lab:

1. Create a new Java Project in Eclipse called Lab12 and import tester.jar.

2. Download the provided source code from the course web site and
import it into your new project. Here is a list of all the files that are
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given, along with a brief description of what is contained in each of
the files. For more info, refer to the comments in the code and/or
compile the javadoc for the provided code.

• Algorithms.java
This file contains implementations of sorting algorithms. This
is where you will implement the additional sorting algorithms
from this lab.

• Examples.java
Your standard Examples class for the Tester. Your tests will
go here.

• IBST.java, Leaf.java, Node.java
An implementation of a binary search tree. It should be similar
to the one you implemented in a previous homework. You will
use these files later in the lab.

• IntComp.java
A Comparator class for Integers. You’ve written the code for
this class several times by now so this should look very familiar.
We will be sorting Integers in this lab.

• Sorter.java
This class contains wrapper classes for our different sorters. We
use this class in order to better abstract our timing framework.
Take a look at the wrapper classes for the given sorters. For each
additional sorting algorithm that you implement, you will have
to create another wrapper class that extends the Sorter class.

• Timing.java
This class contains code to perform our timing analysis. You
don’t need to worry about the contents of this file.

3. Setup your run configuration as usual and run the code to make sure
it works.

12.2 Verifying that the sorters work

Inspect the output generated by the given code. For each sorting algo-
rithm, you should see the contents of an ArrayList before and after being
sorted. Convince yourself that the “after” output contains sorted numbers.
It would be nice if, instead of visually confirming that an ArrayList was
sorted, we had a function that did the checking for us.
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• In the Examples class, implement the isSorted method. It should
consume an ArrayList whose elements are of an arbitrary type T,
as well as a Comparator that is parameterized by the same type. The
method should return true if the ArrayList is sorted according to
the given Comparator and false if not.
Note: you have already been given a skeleton of the method so you
only need to implement the body.

• Now uncomment the tests in the testSorters method, which uses
your isSorted method, and run your project again. Make sure that
these tests are now passing.

12.3 Timing the sorters

In the code provided, you are given a framework to time how long it takes
each sorter to do its work. The results are outputted when the program is
run. The numbers that are reported are in milliseconds. The code is set up
to test each sorter on three types of data:

1. data that is randomly generated

2. data that is already sorted

3. data that is in reverse sorted order

• Uncomment the tests in the testSorterTiming method, run your
project, and examine the generated output. Look at how each of the
sorting algorithms performs on the different types of data. Make a
mental note of the best and worst case scenarios for each sorter (if
there is one).
Note: When looking at the timing results, you should take into ac-
count that the resolution of Java’s timing system is only about 10
milliseconds. Therefore, if a sorter is very fast, the result may get
reported as 0.

12.4 QuickSort

Now it’s time to add another sorter.
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12.4.1 Implementation

• Before implementing the quicksort algorithm, setup the timing frame-
work to include the quicksort algorithm. Follow these steps:

1. Create a wrapper class in Sorter.java. You can pretty much
follow the pattern of the other wrapper classes already there.
Use quickSort as the method name.

2. In the Examples class, add a test for quicksort in the testSortersVisual
method. Again, you can follow what is already there. Just call
visualTestwith a new instance of the quicksort Sorterwrap-
per class.

3. In the Examples class, add a test for quicksort in the testSorters
method.

4. In the Examples class, in the testSorterTimingmethod, cre-
ate a new instance of the quicksort Sorter wrapper class and
add it to the sorters ArrayList.
Note: You may want to hold off on the last step until you are con-
fident that your sorting algorithm is working. You should still
do the other steps though, because they will help you debug if
your implementation doesn’t work on the first try.

• Now that the testing methods are set up, we can implement the ac-
tual algorithm. In the Algorithms class, implement the quickSort
method. The quickSort method should consume an ArrayList of
arbitrary type and a Comparator of the same type. Here is a descrip-
tion of the steps of the quicksort algorithm:

1. Choose a random element of the list to be the pivot element.
2. Rearrange the other elements of the ArrayList such that any-

thing smaller than the pivot winds up to the left of the pivot in
the ArrayList and anything larger winds up to the right.

3. Repeat on each of the less-than-pivot and greater-than-pivot sub-
sections of the ArrayList.

Here are some hints:

– Since, during each recursive call, we need to keep track of which
subsection of the ArrayList we are working on, it seems like a
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helper method would be useful here. In addition to the ArrayList
itself and the Comparator, the helper method should probably
take, as arguments, indices that represent the beginning and end
of the current subsection that you are working on.

– Stop recurring when you have a subsection of one or zero ele-
ments.

– The hard part of this algorithm is rearranging the ArrayList
such that the elements of the ArrayList that are smaller than
the pivot wind up to the left and the elements that are larger
wind up to the right. You will probably have to compare each
element to the pivot and then swap that element into the ap-
propriate place, depending on if it is larger or smaller than the
pivot. Of course, a potential problem is that two elements are
needed for every swap operation. An idea would be to scan el-
ements starting from the beginning of the ArrayList until you
find one that needs to be swapped, and then repeat, except start-
ing at the end of the ArrayList. Now you have two items to
swap.
Note: Don’t feel that you need to use these hints. There are many
possible solutions and if you feel that you have an idea that will
work, go for it.

– This algorithm is more difficult than previous sorting algorithms.
You may find it useful to do some planning before starting to
code. Drawing out some examples is always a good idea, as is
exchanging ideas with your parter.

(You ARE working with a partner, aren’t you?)

(No, that wasn’t just a joke, actually go talk to someone else
about the problem.)

(Yes, this means you.)

(Do it now.)

• When you are are satisfied that your algorithm works, run your project
and look at the timing output. The times for quicksort should be
faster than the previous two sorting algorithms, especially for larger
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ArrayLists. If the times for your quicksort algorithm differ depend-
ing on the type of data being sorted (the times should always be the
same, no matter if the data is random or already sorted), it may have
something to do with how you chose your pivot. Did you choose a
truly random pivot or did you always choose the first element or the
middle element?

12.4.2 Analysis

In Big Oh notation, selection and insertion sort are O(n2) algorithms, where
n is the number of elements in the list. This makes sense because in each
of those two algorithms, we are approximately comparing each element
in the list to every other element in the list. Hence we do approximately
n ∗ n = n2 comparisons.

In selection sort, finding the minimum element takes about n compar-
isons because we have to check every item in the list (yes, we don’t always
check EVERY item, but we still do enough to qualify as n comparisons).
And we look for the minimum element n times, giving us, again, n2 com-
parisons.

In insertion sort, each time we add an element into the sorted list, we
have to compare it to every other element to know where it goes (again, we
don’t always do the full n comparisons, but on average, we do enough to
count as n comparisons). And since we have to insert n elements, we again
get n2 comparisons.

However, for insertion sort, note that if the given list is in perfect reverse-
sorted order, then we do get to do less than n comparisons on each insert.
Actually, we only have to do one compare on each insert, which means that
our total run time would be n ∗ 1 = n. So for reverse-sorted lists, the run
time of insertion sort is only O(n). Does this match up with our timing re-
sults? (If you were paying attention, right now you should be saying “wait,
wasn’t the sorted data set the one that was really fast?” Good observation!
There must be something fishy with the insertion sort implementation that
you were given. Check out the code if you are interested in finding out.)

As for quicksort, rearranging the list each time so that everything smaller
than the pivot is to the left and everything larger is to the right takes about
n compares. Now we just have to figure out how many times we repeat this
process. When we recur, we approximately cut the list into halves and re-
cur on each half. The number of times we recur is the number of times that
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we can cut the list in half. This is approximately log2 n, which is where the
log n part of O(n log n) comes from (whenever you see a log in a computer
science class, it always means log2, also known as log with base 2, or “how
many times can you cut this number in half?”). Therefore, for quicksort,
we have a total of n log n comparisons!

12.5 Tree Sort

You may have noticed that there is also an implementation for a tree sort
algorithm in the Algorithms class (treeSort213). It uses the binary
search tree that you implemented previously in this class to do sorting.

• Create a wrapper class for the tree sort algorithm and setup the test-
ing methods to include tree sort, just like we did for the other sorters
(the methods in Examples that you need to change are: testSortersVisual,
testSorters, and testSorterTiming).

A tree sort sorting algorithm works as follows:

1. Add all elements to be sorted to a binary search tree.

2. Find the smallest element in the tree.

3. Add the smallest element back to the list to be sorted.

4. Remove the smallest element.

5. Repeat until there are no more elements in the tree.

Since adding, finding, and removing elements from a binary search tree
are O(log n) operations (bonus points on the lab if you can explain why),
in total, treesort takes O(n log n) time. (Big-oh notation allows us to drop
constant factors. So something that runs in 3n log n time still counts as
O(n log n).)

The tree sort algorithm that is given relies on the method getContentsInOrder
in the IBST interface.

• Implement getContentsInOrder in the Node class. This method
should:

1. Create an empty ArrayList
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2. Do steps 2 through 5 of the tree sort algorithm above, each time
adding the smallest element to the created ArrayList.

Hint: You may find it useful to use getFirst and getRest
to get the smallest element and to remove the smallest element
from the tree. (However, you are not required to use these meth-
ods. There are other solutions that would work – and in fact,
may be slightly more efficient.)

3. Return the filled ArrayList

• When you are done, run your project and look at the timing output
for treeSort213. The time for sorting random data should be fast
– comparable to quicksort. But you may notice that the times for the
sorted and reverse sorted data are quite slow. Try to come up with
reasons why. Think about how elements are added to a binary search
tree.

• Optional The reason why the tree sort was so slow on sorted data is
because the O(log n) time for add and find (and remove) operations
assumes that the tree is perfectly balanced (ie - has equal number of
elements on the left and right side). On average this is true, but in
certain special cases, this may not be true. For example, if items are
added in order, then everything will wind up on one side, so search-
ing, etc. would take O(n) time instead, giving us an O(n2) sorting
algorithm.

To fix this, we can use a self-balancing binary tree. This data struc-
ture is like a regular binary search tree, except that when an element
is added, the tree rearranges its elements if necessary to remain bal-
anced. Therefore, each find and search operation is guaranteed to
take only O(log n) time.

Unfortunately, Java doesn’t quite have what we need to implement
tree sort with a balanced tree. You can use TreeSet to get an approx-
imation, but TreeSet removes duplicate elements, so it wouldn’t be
quite right (if you do want to try this, make sure to use Integer.MAX VALUE
as the max argument when calling genRandArrayList in the Examples
class, to minimize the chance of generating duplicate elements).

Fortunately, we can get an implementation of what we need from
Google:
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1. Download the Google collections .jar files from the from this
web site:

http://code.google.com/p/google-collections/

Add the .jar file to your project in the usual way (download
the .zip file, extract it, and add the
google-collect-snapshot-xxxxxxxx.jar file to your project).

2. Create a treeSortBalancedmethod in the Algorithms class.
You should be able to copy treeSort213 and just replace the
IBST declaration with a TreeMultiset one. You will need to
add this import to the top of your file:

import com.google.common.collect.TreeMultiset;

Creating a TreeMultiset is slightly tricky if you want to give
it a Comparator; you need to use the static create method
in this case. Check the javadoc provided by Google for more
information.

3. Modify the appropriate test methods and run your project. The
times for the new tree sort algorithm should be O(n log n) on all
the different data sets.

4. Even though the new tree sort algorithm may seem like it is
faster than even quicksort, can you think of a reason why you
may not want to use it all the time? Think about what other
resources besides cpu cycles are in a computer.

So in conclusion, there is no right answer to the question asked at
the beginning of the lab. Different sorting algorithms are better for
different situations. Sure an O(n log n) sorting algorithm is almost
always better than a O(n2) one, but even then that might not always
be the case, as we’ve seen in this lab. (If you don’t choose the pivot
randomly in quicksort, the worst case is also O(n2)). So in general,
Randall may be right that just using a sorting algorithm like quicksort
that is O(n log n) on average should be ok. But hopefully this lab
has convinced you that it is still useful to study the different types of
algorithms.
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As a final note, I’ll mention that heap sort and merge sort are two
other commonly used O(n log n) sorting algorithms. In fact, Java’s
Collections.sort method uses a merge sort (more bonus points,
if you can add it to our timing framework and see how it compares).
Merge sort has one advantage over quicksort in that it is a stable sort.
A sorting algorithm is stable if it preserves the order of items that the
Comparator says are equal. Why would you care about the order
of items that are equal? Well you wouldn’t if you were just sorting
Integers, but what if there was more than one way to sort a particular
type of item? Remember the balloon example from previous labs?
Say I had a list of balloons and I wanted to sort by size, and then for
balloons of the same size, I wanted to sort by height. Well if I had
a stable sorting algorithm, I could first sort the list by height, and
then by size, and I would get the result that I want. If my sorting
algorithm were not stable, then the second sort would mess up the
results of the first sort, and I wouldn’t be able to get what I want. See
how interesting sorting can be? If you are interested in learning more
about sorting, take an algorithms course!
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