
CSU213 Exam 1 – Spring 2008

Name:

Student Id (last 4 digits):

• Write down the answers in the space pro-
vided.
• You may use all forms that you know from
ProfessorJ (Beginner), or ProfessorJ (Inter-
mediate, where indicated. If you need a
method and you don’t know whether it is pro-
vided, define it.
• Remember that the phrase “develop a
class” or “develop a method” means more
than just providing a definition. It means to
design them according to the design recipe.
You are not required to provide a method
template unless the problem specifically asks
for one. However, be prepared to struggle if
you choose to skip the template step.
• We will not answer any questions during
the exam.

Good luck.

Problem Points /

1 /18

2 /15

2 extra / 5

3 /12

Total /45

18 Points

Problem 1

A children’s computer game asks the child to collect magic flowers. The
flower come in three colors, red, green, and blue. The magic power is hidden
in the seed covered by a layer of petals. To gain the magic power the player
must get through all layers of petals to pick the seed.

Here is a Scheme data definition for a magic flower:

;; A Magic is on of

;; -- (make-seed Number String)

;; -- (make-petal Magic)

(define-struct seed (size color))

(define-struct petal (flower))

A. Draw a class diagram for this data definition.

Solution [POINTS 2: must include three
boxes with self-reference arrow.]

+-------+

| Magic |<--------------+

+-------+ |

/ \ |

--- |

| |

------------------- |

| | |

+--------------+ +--------------+ |

| Seed | | Petal | |

+--------------+ +--------------+ |

| int size | | Magic flower |-+

| String color | +--------------+

+--------------+

2

B. Complete the Java class definitions that represent these classes of data.

Solution [POINTS 2: must include an
interface and two classes - with purpose statements.]

// to represent a magic flower

interface Magic{}

// to represent a seed of a magic flower

class Seed implements Magic{

int size;

String color;

Seed(int size, String color){

this.size = size;

this.color = color;

}

}

// to represents a petal layer of the magic flower

class Petal implements Magic{

Magic flower;

Petal(Magic flower){

this.flower = flower;

}

}

3

C. Make examples of data for these classes.

Solution [POINTS 2: must include just
seed, and seed covered with petals.]

class Examples{

Examples(){}

Magic redSeed = new Seed(3, "red");

Magic blueSeed = new Seed(4, "blue");

Magic greenSeed = new Seed(4, "green");

Magic mid = new Petal(new Petal(this.blueSeed));

Magic big = new Petal(this.redSeed);

Magic small = new Petal(new Petal(new Petal(new Petal(this.blueSeed))));

Magic mini = new Petal(new Petal(new Petal(this.greenSeed)));

}

4

D. Design the method countPetals that counts the number of petal lay-
ers in a magic flower.

Solution [POINTS 3: purpose/header;
bodies in both classes; examples]

// in the interface Magic:

// count the number of petals covering the seed in this flower

int countPetals();

// in the class Seed:

// count the number of petals covering the seed in this flower

int countPetals(){return 0;}

// in the classPetal:

/* TEMPLATE:

... this.flower ... -- Magic

... this.flower.countPetals() ... -- int

*/

// count the number of petals covering the seed in this flower

int countPetals(){ return 1 + this.flower.countPetals(); }

// in the class Examples:

// test the method countPetals in the classes that represent a magic flower

boolean testCountPetals(){

return (check this.redSeed.countPetals() expect 0) &&

(check this.big.countPetals() expect 1) &&

(check this.small.countPetals() expect 4);

}

5

E. The power of the seed of a magic flower depends on the color of the
flower. For red flowers, the power is three times its size, for blue flowers
twice its size. For all other colors, the power of the seed is given by
its size. The power of the flower is given by the power of its seed, but
is diminished by one by every layer of petals that cover the seed.

Assume that red color is given as "red" and the blue color is given as
"blue".

Design the method power that compute the power of a flower. Make
sure you follow the design recipe.

Include the template with your solution.

Solution [POINTS 7: 1 point purpose/header;
2 points for the template: own method invocation, self-reference method
invocation - must include the type of the value. 2 points body; 2 points
examples.]

// in the interface Magic:

// find the seed of this flower

Seed findSeed();

// compute the magic power of this magic flower

int power();

// compute the magic power of this magic flower

int power(){

return this.flower.power() - 1;

}

//--------- alternative: the hard way ------------

// in the class Seed:

// find the seed of this flower

Seed findSeed(){

return this;

}

// compute the magic power of this magic flower

int powerAlt(){

6

if (this.color.equals("red"))

return 3 * this.size;

else if (this.color.equals("blue"))

return 2 * this.size;

else

return this.size;

}

//--------- alternative: the end ----------------

// in the classPetal:

/* TEMPLATE:

... this.flower ... -- Magic

... this.countPetals() ... -- int

... this.power() ... -- int

... this.findSeed() ... -- Seed

... this.flower.countPetals() ... -- int

... this.flower.power() ... -- int

... this.flower.findSeed() ... -- Seed

*/

// find the seed of this flower

Seed findSeed(){

return this.flower.findSeed();

}

// compute the magic power of this magic flower

int power(){

return this.findSeed().power() - this.countPetals();

}

// in the class Examples:

// test the method findSeed in the classes that represent a magic flower

boolean testFindSeed(){

return (check this.redSeed.findSeed() expect new Seed(3, "red")) &&

(check this.mid.findSeed() expect new Seed(4, "blue")) &&

(check this.mini.findSeed() expect new Seed(4, "green"));

}

7

// test the method power in the classes that represent a magic flower

boolean testPower(){

return (check this.redSeed.power() expect 9) &&

(check this.mid.power() expect 6) &&

(check this.big.power() expect 8) &&

(check this.small.power() expect 4) &&

(check this.mini.power() expect 1);

}

8

20 Points

Problem 2

The following class diagram allows us to represent information about flight
itineraries. For example a flight from Boston to San Francisco may be a
nonstop flight, or may involve several legs, changing planes in Philadelphia
and in Houston. One leg of a flight that departs at 9 am and arrives at 2
pm may be given as:

Flight b2s = new Flight("BOS", "SFO", 9, 14);

Notice that we give only whole hour for either the departure time or the
arrival time.

+-----------+

| Itinerary |<-----------------+

| (Itin) | |

+-----------+ |

| |

/ \ |

--- |

| |

------------------------- |

| | |

+---------------+ +----------------+ |

| Nonstop | | MutliLeg | |

| (NS) | | (ML) | |

+---------------+ +----------------+ |

| Flight flight |-+ +-| Flight first | |

+---------------+ | | | Itinerary rest |-+

| | +----------------+

v v

+---------------+

| Flight |

+---------------+

| String origin |

| String dest |

| int depart |

| int arrive |

+---------------+

For the purpose of brevity you may use the names in parentheses for
class names, instead of the full names given above.

9

A. Make an example of two nonstop itineraries and of the three-leg flight
from Boston to San Francisco described earlier.

Solution [POINTS 2: 1 for the a non-
stop flight, 1 point for three-leg flight.]

Flight bos_phi = new Flight("BOS", "PHI", 8, 10);

Flight phi_hst = new Flight("PHI", "HST", 11, 13);

Flight hst_sfo = new Flight("HST", "SFO", 14, 15);

Flight dfw_sfo = new Flight("DFW", "SFO", 14, 15);

Itinerary b2s = new Nonstop(new Flight("BOS", "SFO", 9, 14));

Itinerary p2h = new Nonstop(this.phi_hst);

Itinerary d2s = new Nonstop(new Flight("DFW", "SFO", 14, 15));

Itinerary b2s3 = new MultiLeg(this.bos_phi,

new MultiLeg(this.phi_hst,

new Nonstop(this.hst_sfo)));

Itinerary b2serr = new MultiLeg(this.bos_phi,

new MultiLeg(this.phi_hst,

new Nonstop(this.dfw_sfo)));

10

B. The traveler wants to know how much time will she spend at airports
between landing of one flight and the takeoff of the connecting flight.
Design the method waitTime that computes the total waiting time for
an itinerary.

Solution [POINTS 7: 1 point purpose/header;
5 points body - including helper methods with tests; 2 points exam-
ples/tests.]

in the interface Itinerary:

// compute the total waiting time between flights in this itinerary

int waitTime();

// compute the hours of waiting time for the first flight of this itinerary,

// after the given time --- assume the given time is before the departure

int hoursAfter(int time);

in the class Nonstop:

// compute the total waiting time between flights in this itinerary

int waitTime(){ return 0; }

// compute the hours of waiting time for the first flight of this itinerary,

// after the given time --- assume the given time is before the departure

int hoursAfter(int time){

return (this.flight.depart - time);

}

in the class MultiLeg:

// compute the total waiting time between flights in this itinerary

int waitTime(){

return this.rest.hoursAfter(this.first.arrive) +

this.rest.waitTime();

}

// compute the hours of waiting time for the first flight of this itinerary,

// after the given time --- assume the given time is before the departure

int hoursAfter(int time){

return (this.first.depart - time);

}

in the class Examples:

11

// test the method waitTime in the classes that represent flight itinerary

boolean testWaitTime(){

return (check b2s.waitTime() expect 0) &&

(check b2s3.waitTime() expect 2);

}

// test the method hoursAfter in the classes that represent flight itinerary

boolean testHoursAfter(){

return (check b2s.hoursAfter(9) expect 0) &&

(check b2s3.hoursAfter(5) expect 3);

}

12

C. Design the method isValid that determines whether an itinerary is
valid. For a multi-leg flight it means that next leg takes off from the
same airport where the previous one landed, and leaves at least one
hour after the arrival at this airport. A nonstop flight itinerary is
always valid.

The first three steps of the design recipe are required for this problem.
The design of the body carries 5 points extra credit.

Solution [POINTS 7: 1 point purpose/header;
5 points extra credit: body - including helper methods with tests; 2
points examples/tests.]

in the interface Itinerary:

// is this a valid itinerary

boolean isValid();

// does this itinerary depart from the given airport?

boolean departsFrom(String origin);

// does this itinerary depart after the given time?

boolean departsAfter(int time);

in the class Nonstop:

// is this a valid itinerary

boolean isValid(){

return this.flight.isValid();

// return true;

}

// does this itinerary depart from the given airport?

boolean departsFrom(String origin){

return this.flight.departsFrom(origin);

// return this.flight.origin.equals(origin);

}

// does this itinerary depart after the given time?

boolean departsAfter(int time){

return this.flight.departsAfter(time);

// return this.flight.depart > time;

}

13

in the class MultiLeg:

// is this a valid itinerary

boolean isValid(){

return this.rest.departsFrom(this.first.dest) &&

this.rest.departsAfter(this.first.arrive) &&

this.rest.isValid();

}

// does this itinerary depart from the given airport?

boolean departsFrom(String origin){

return this.first.origin.equals(origin);

}

// does this itinerary depart after the given time?

boolean departsAfter(int time){

return this.first.depart > time;

}

in the class Examples:

// test the method isValid in the classes that represent flight itinerary

boolean testIsValid(){

return (check b2s.isValid() expect true) &&

(check b2serr.isValid() expect false) &&

(check b2s3.isValid() expect true);

}

// test the method departsFrom in the classes that represent flight itinerary

boolean testDepartsFrom(){

return (check bos_phi.departsFrom("BOS") expect true) &&

(check bos_phi.departsFrom("PHI") expect false) &&

(check b2s.departsFrom("BOS") expect true) &&

(check b2s.departsFrom("HST") expect false) &&

(check b2s3.departsFrom("BOS") expect true) &&

(check b2s3.departsFrom("HST") expect false);

}

// test the method departsAfter in the classes that represent flight itinerary

boolean testDepartsAfter(){

14

return (check bos_phi.departsAfter(7) expect true) &&

(check bos_phi.departsAfter(8) expect false) &&

(check b2s.departsAfter(7) expect true) &&

(check b2s.departsAfter(9) expect false) &&

(check b2s3.departsAfter(7) expect true) &&

(check b2s3.departsAfter(9) expect false);

}

15

D. Show the templates for the classes Nonstop and Multileg after you
have designed all of the methods.

Solution [POINTS 4: 1 point for the
Nonstop class (must include data types); 3 points for the Multileg

class (method invocations from the field this.flight, and self-referential,
must include datatypes)]

/*---- in the Nonstop class: ----*/

/* TEMPLATE:

... this.flight ... -- Flight

... this.flight.origin ... -- String

... this.flight.dest ... -- String

... this.flight.depart ... -- int

... this.flight.arrive ... -- int

... this.hoursAfter(int time)... -- int

... this.travelTime() ... -- int

... this.arrival() ... -- int

... this.flightTime() ... -- int

... this.isValid() ... -- boolean

... this.departsFrom(String origin) ... -- boolean

... this.departsAfter(int time) ... -- boolean

... this.destination() ... -- String

*/

/*---- in the MultiLeg class: ----*/

/* TEMPLATE:

... this.first ... -- Flight

... this.rest ... -- Itinerary

... this.first.origin ... -- String

... this.first.dest ... -- String

... this.first.depart ... -- int

... this.first.arrive ... -- int

... this.hoursAfter(int time)... -- int

... this.travelTime() ... -- int

... this.arrival() ... -- int

16

... this.flightTime() ... -- int

... this.isValid() ... -- boolean

... this.departsFrom(String origin) ... -- boolean

... this.departsAfter(int time) ... -- boolean

... this.destination() ... -- String

... this.first.hoursAfter(int time)... -- int

... this.first.travelTime() ... -- int

... this.first.arrival() ... -- int

... this.first.flightTime() ... -- int

... this.first.isValid() ... -- boolean

... this.first.departsFrom(String origin) ... -- boolean

... this.first.departsAfter(int time) ... -- boolean

... this.first.destination() ... -- String

... this.rest.hoursAfter(int time)... -- int

... this.rest.travelTime() ... -- int

... this.rest.arrival() ... -- int

... this.rest.flightTime() ... -- int

... this.rest.isValid() ... -- boolean

... this.rest.departsFrom(String origin) ... -- boolean

... this.rest.departsAfter(int time) ... -- boolean

... this.rest.destination() ... -- String

*/

17

This page is intentionally left blank - use it if you need extra space for
any problem.

18

12 Points

Problem 3

You are trying to design a treasure hunting game that leads the player
through a series of rooms. Each room has a door through which you enter
and two other doors - one on the left and one on the right. Some doors
are closed. Each open door leads to another room - again the same as the
previous one. The size of the room does not matter, but each has a name
and contains a treasure of certain weight.

To make our design easier to manage, every room may be entered only
once - the player cannot get lost by returning to the same room over and
over again.

The example below shows a sample maze:

/*

+-----R-----+-----------+-----L-----+

| | | |

| C/4 B/2 D/2 |

| IN L R IN |

| |

| | IN | |

+--- L -----+---- L ----+---- R ----+

| IN | | | | IN |------L------+

R L | | R L IN G/5 |

| | | A/3 | | F/2 |------R------+

| E/3 | | | +------+

+------+ IN |

| |

+-----R-----+

| IN |-----L------+

| |

R L IN Y/10 |

| X/10 |

| |-----R------+

+-----------+

You can see that room A has 3 lbs of treasure and leads to the room B
on the left. The right door from the room A is closed. Room B has 2 lbs
of treasure and leads to the room C on the left and to the room D on the
right...

19

A. Design the classes that represent such maze and represent your solution
as a class diagram.

Solution [POINTS 3: 1 for the IMaze
interface, 1 for the two variants, 1 point for the arrows.]

+---------------------+

| +----------------+ |

| | | |

v v | |

+-------+ | |

| IMaze | | |

+-------+ | |

+-------+ | |

| | |

/ \ | |

--- | |

| | |

------------------ | |

| | | |

+--------+ +-------------+ | |

| Closed | | Room | | |

+--------+ +-------------+ | |

+--------+ | String name | | |

| int weight | | |

| IMaze left |----+ |

| IMaze right |------+

+-------------+

20

B. Show the complete Java class and interface definitions that correspond
to your class diagram.

Solution [POINTS 5: 1 for the purpose
statements; 1 for the IMaze interface; 1 for the closed door; 2 points
for the room - with a constructor.]

// to represent a maze of rooms for a treasure hunt game

interface IMaze {

}

// to represent closed door in a maze

class Closed implements IMaze {

Closed() {

}

}

// to represent a room with two doors in a maze

class Room implements IMaze {

String name;

int weight;

IMaze left;

IMaze right;

Room(String name, int weight, IMaze left, IMaze right) {

this.name = name;

this.weight = weight;

this.left = left;

this.right = right;

}

}

21

C. Make examples of data that represent the maze shown above.

Solution [POINTS 4: 1 point for an ex-
ample of a closed room, 3 points for examples of other rooms: subtract
a point if rooms are missing, but those shown are correct (represent
our maze), subtract two points if there are at least two examples of
rooms that are correct, though they may not correspond to our maze.]

class Examples{

Examples(){}

IMaze closed = new Closed();

IMaze roomG = new Room("G", 5, this.closed, this.closed);

IMaze roomF = new Room("F", 2, this.roomG, this.closed);

IMaze roomE = new Room("E", 3, this.closed, this.closed);

IMaze roomD = new Room("D", 2, this.closed, this.roomF);

IMaze roomC = new Room("C", 4, this.closed, this.roomE);

IMaze roomB = new Room("B", 2, this.roomC, this.roomD);

IMaze roomY = new Room("Y", 10, this.closed, this.closed);

IMaze roomX = new Room("X", 10, this.roomY, this.closed);

IMaze roomA = new Room("A", 3, this.roomB, this.roomX);

}

22

