
Exercise Set 9 c©2009 Felleisen, Proulx, et. al.

9 Direct Access Data Structures

Portfolio Problems

Finish the part 9.4 of Lab 9 that deals with stacks and queues.

9.1 Eliza

Our goal is to train our computer to be a mock psychiatrist, carrying on a
conversation with a patient. The patient (the user) asks a series of ques-
tions. The computer-psychiatrist replies to each question as follows. If the
question starts with one of the following (key)words: Why, Who, How,
Where, When, and What, the computer selects one of the three (or more)
possible answers appropriate for that question. If the first word is none of
these words the computer replies ’I do not know’ or something like that.

1. Start by designing the class Reply that holds a keyword for a ques-
tion, and an ArrayList of answers to a the question that starts with
this keyword.

2. Design the method randomAnswer for the class Reply that pro-
duces one of the possible answers each time it is invoked. Make sure
it works fine even if you add new answers to your database later.
Make at least three answers to each question.

3. Design the class Eliza that contains an ArrayList of Replys.

4. In the class Eliza design the helper method firstWord that con-
sumes a String and produces the first word in the String.

The following code reads the next input line from the user. You will
need to find out what was the first word in the patient’s question.
Look up the documentation for the String class (and we gently hint
that the methods trim, toLowerCase, and startsWith may be
relevant).

System.out.println("Type in a question: ");
s = input.nextLine();

Make sure your program works if the user uses all uppercase letters,
all lower case letter, mixes them up, etc.

1



c©2009 Felleisen, Proulx, et. al. Exercise Set9

5. In the class Eliza design the method answerQuestion that con-
sumes the question String and produces the (random) answer. If
the first word of the question does not match any of the replies, pro-
duce an answer Don’t ask me that. — or something similar. If no first
word exists, i.e., the user either did not type any letters, or just hit the
return, throw an EndOfSessionException.

Of course, you need to define the class EndOfSessionException.

6. In the Interactions class design the method that repeats asking
questions and providing answers until it catches the
EndOfSessionException — at which time it ends the game.

9.2 Binary Search

Binary Search allows you to find quickly a piece of data in a sorted collec-
tion of data that can be accessed directly at a specific location. You check
the item in the middle, if that is not the one you were looking for, you con-
tinue the search either in the upper half, or in the lower half — and recur
till there you either succeed, or have nowhere else to look.

In the Algorithms class design the method binarySearch that con-
sumes an ArrayList<T> that contains data sorted by using the given
instance of a class that implements the Comparator<T> interface. The
method also consumes another item of the type <T>, the item we are search-
ing for.

The method produces the index in the ArrayList<T> where the given
item has been found. If the item does not appear in the list, the method
throws an ItemNotFoundException.

Of course, you need to define the class ItemNotFoundException.

Tests

Of course, you need to test your methods. Make a simple class of data, such
as a Book or Balloon we have used in the past — or come up with some-
thing different — and define two different Comparators for this class.
Then make examples of lists of these data items and make sure your tests
use both of the Comparators.

Organize your tests so that the reader can readily see what is the pur-
pose of each test and what data is used in computing the result and in
providing the expected value.

2


