
Exercise Set 8 c©2009 Felleisen, Proulx, et. al.

8 Stacks, Queues, Binary Search Trees: Traversals and
Visitors

Portfolio Problems

Use the queue you have designed in Lab 8 to represent a queue of cars
going across the canvas.

1. Design the class Car that represents one car of a random color. The
new car starts on the left of the Canvas and it moves right on each
tick. Of course, the car can be drawn on the given Canvas.

2. Now design a queue of cars. When the car reaches the right side of
the Canvas, it is replaced by a new car that starts on the left. So, you
need to remove the car from the front of the queue and add a new one
at the end.

3. Design a world of moving cars. If you wish, you may have more than
one line of traffic.

4. Optional: Add a class that represents a chicken or a frog that is trying
to cross the street. You know what can happen!

Use the idraw package.

Pair Programming Assignment

8.1 Problem

Work out the Exercises 34.11 - 34.15.

8.2 Problem

Traversals over Binary Search Trees
Start with the code given in the BST.zip file. You should have the fol-

lowing files:

• Book.java our good old Book class that includes two Comparators.

• ABST.java an abstract class that represents a generic binary search
tree.

1



c©2009 Felleisen, Proulx, et. al. Exercise Set8

• Leaf.java an abstract class that represents a leaf of a generic binary
search tree.

• Node.java an abstract class that represents a node of a generic bi-
nary search tree.

• Algorithms.java a class that contains methods that traverse over a generic
binary search tree, relying on the Traversal interface.

• Examples.java that contains several examples of binary search trees of
books and some sample tests.

• ABSTvisitor.java a visitor interface for a generic binary search tree that
will allow us to define a number of methods easily.

In this problem you will work with the Traversal interface and see
both its advantages and its shortcomings. The next problem deals with the
tree visitor and illustrates its advantages.

A. Run the project. Build additional examples of binary search trees us-
ing the comparison by price.

B. Add tests similar to those already shown for the new data you have
defined.

C. The class Node implements the methods getFirst and getRest in
a very strange way. As you can see, some of the tests fail. Design the
correct implementation of these methods.

D. In the Algorithms class design the method totalPrice that uses
the hooks provided by the Traversal interface and computes the
total price of all books in a binary search tree.

E. In the Algorithms class design the method makeString that uses
the hooks provided by the Traversal interface and produces a String
of all data in the binary search tree. You may add some separators be-
tween the individual data items, such as new line, comma, or semi-
colon.

8.3 Problem

Traversals are OK is you only want to see all data items in the tree, one at
a time, is the order specified by the Comparator. But you loose a lot of in-
formation about the tree structure. Try to design the method that computes

2



Exercise Set 8 c©2009 Felleisen, Proulx, et. al.

the heights of the tree — the maximum number of generations of children,
using the hooks provided by the Traversal interface.

A. Look at the ABSTvisitor class and at the class CountNodes. Add
test cases in the Examples class for the additional trees you have
defined earlier.

B. Design the class ComputeHeight that implements the ABSTvisitor
by defining methods that compute the heights of the binary search
tree.

C. Design the class Containsthat implements the ABSTvisitor by
defining methods that determine whether the given item matches one
of the data items in the binary search tree.

Hint: Look at the lecture notes for ideas.

Note: The binary search tree is already equipped with a method that
determines whether two items have matching values.

3


