
Exercise Set 7 c©2009 Felleisen, Proulx, et. al.

7 Abstracting over the Data Type

Portfolio Problems

Start with the program ou wrote for the parts A., B., and C. in Lab 7.

1. Make a examples of books and write several examples that will pro-
duce a list of all books by the given author.

For example if your list contains books by John Steinbeck, Lewis Car-
roll, William Shakespeare, and others, your examples will produce
first a list of all books by Steinbeck, then a list of all books by Carroll,
then all books by Shakespeare.

2. Make examples of songs and write several examples that will pro-
duce a list of all songs by the given artist.

Pair Programming Assignment

7.1 Problem

Complete Parts D. of the Lab 7, dealing with the lists of books, song, and
images.

7.2 Problem

A. Add the following interface to the ILo.java file:

// to represent a method that mutates the state of this object
interface Change<T>{

void mutate();
}

B. Design the method changeAll for the classes that represent a list
of items of the type <T> that mutates every value in this list as pre-
scribed by the method mutate that is defined to implement the IChange
interface.

C. In the class Book implement the interface IChange through a method
that increases the prices of all books by 20%.

Test the method mutate in the class Book.

1

c©2009 Felleisen, Proulx, et. al. Exercise Set7

Test the method changeAllfor the classes that represent a list of
items of the type <Book>.

D. In the class Song implement the interface IChange through a method
that converts the song duration to seconds.

Test the method mutate in the class Song.

Test the method changeAllfor the classes that represent a list of
items of the type <Song>.

E. In the class Image implement the interface IChange through a method
that crops the sizes of all images by 50%.

Test the method mutate in the class Image.

Test the method changeAllfor the classes that represent a list of
items of the type <Image>.

7.3 Problem

Java libraries provide the following interface that can be used to compare
arbitrary two items of the same type:

// define ordering among items of the type T
interface Comparator<T>{

// return value < 0 if t1 is before t2
// return 0 if t1 is the same as t2
// return value > 0 if t1 is after t2
int compare(T t1, T t2);

}

To use it you need to include import java.util.*; at the top of
your file.

A. Create a file BookComparators.java that will contain Comparators for
Books: one that compares them by titles, one that compares them by
authors, and one that compares them by price.

Test every Comparator.

B. Design the sort method for the lists of items of the type <T> that
consumes an instance of a Comparator<T> and produces a list of
items sorted in the order given by the Comparator.

2

Exercise Set 7 c©2009 Felleisen, Proulx, et. al.

C. Test your method with all three Comparators defined in the previ-
ous part.

D. Add a test that sorts the songs by artists.

7.4 Problem

In the lecture on Thursday we defined the following interface:

// represents a function that combines list item of the type T
// with the accumulated value of the type R
// and produces a new accumulated value of the type R
interface IFunTR2R<T, R>{

R combine(T t, R r);
}

and use it to define the method that emulates the Scheme fold functions
as follows:

In the interface ILo<T>:
// apply the update to combine every item in the list
// with the accumulated value; start with the base value
public <R> R fold(IFunT2R<T, R> update, R base);

In the class MtLo<T>:
public <R> R fold(IFunT2R<T, R> update, R base){
return base; }

In the class ConsLo<T>:
public <R> R fold(IFunT2R<T, R> update, R base){
return
update.combine(this.getFirst(),

this.getRest().fold(update, base)); }

A. In the classes Book, Song, and Image design the method toString
that produces a readable String representation of the data that the
object represents. For example, you may produce a String

"Book: The Pearl, written by John Steinbeck, \$20"

Note: The Java class Object already implements toString method,
and so every class has the toString method defined. The String it
produces is not very helpful. However, it means that you can invoke
the toString method on any Java object.

3

c©2009 Felleisen, Proulx, et. al. Exercise Set7

B. In the Examples class design the method listToString that con-
sumes an ILo<T> list and produces a String representation of its
data, one line per list item, by invoking the fold method with the
appropriate update and base parameters.

C. Now design the method listToStringReverse that works just as
the one above, but produces the list items in the order reversed from
the previous one.

4

