
Exercise Set 5 c©2009 Felleisen, Proulx, et. al.

5 Abstracting over Data Definitions, Methods

Portfolio Problems

Work out as complete programs the following exercises from the textbook.
You need not work out all the methods, but make sure you stop only when
you see that you really understand the design process.

Problems:

1. Problem 19.4 on page 271.

2. Problem 19.15 on page 285.

Pair Programming Assignment

Note: Please, download the new version of tester. It has been posted on
February 5th at 12:30 pm.

5.1 Problem

Complete Part 5.3 of the Lab 5, dealing with bank accounts.
Hand in the solution after you have designed all abstractions.

5.2 Problem

Complete Part 5.4 of the Lab 5, dealing with equality.

5.3 Problem

Rewrite the samemethods in the previous problem using the instanceof
operator and casting as shown on the lab instructions after the item 5.3-7.

Define a new class PremiumChecking that extends Checking as fol-
lows. The Premium checking account includes a bonus points field. A
customer gets one point for each $20 deposited. Define the same method
for the PremiumChecking class, following the same technique as has been
used in the TestSame.java example. Add test cases that shows how this def-
inition fails.

1

c©2009 Felleisen, Proulx, et. al. Exercise Set5

5.4 Problem

We would like to consider the typical problems we encounter in designing
interactive games. The geometry library provides us with a simple class
Posn, but this comes with no methods for manipulating the data.

We know that there are some typical questions that involve manipulat-
ing Posns, and so we would like to build a framework that can encapsulate
the typical behaviors.

To do so, we decide to build a class CartPt that extends the class
Posn with the following functionality:

1. We want to make sure the location is always within bounds of our
Canvas. To enforce this, design the method adjust that consumes
the width and the height of the Canvas and produces a CartPt with
the coordinates moved to fit within the Canvas. If the x coordinate is
negative, it changes to zero, if it is greater than the given width it is
set to the width. The y coordinate is handled similarly.

2. We often need to move the CartPt by some distance. Design the
method move that produces a new CartPt with the coordinates at a
location moved by the given dx and dy.

3. At times we need to move the CartPt by a random distance within
some range. Design the method moveRandom that produces a new
CartPtmoved by the given random range in both the horizontal and
vertical direction.

So, for example, for our falling star that moves down 5 pixels on each
tick, but moves randomly in the range from -2 to +2 horizontally, the
method call would be

this.loc.moveRandom(-2, 2, 5, 5)

indicating that the x coordinate changes by any value in the range
[-2, 2] and the y coordinate changes by a value in the range [5, 5] (so
it must be 5).

4. Finally, design the method closeTo that determines whether this
CartPt is close to the given CartPt within the given distance.

Having a library class that provides all this functionality should make
the design of our games much easier to write —- and much easier to read
as well.

2

Exercise Set 5 c©2009 Felleisen, Proulx, et. al.

Note 1: To define a random number we use methods similar to those used
in ProfessorJ languages. Unfortunately, the implementation of the nextInt
method for the class Random in the java.util library is different from
that provided in ProfessorJ. In Java the method nextInt has two options:

// produce a new random integer in the range [0, n)
// throws exception if n <= 0
int nextInt(int n);

// produce a new random integer
// any valid value is equally likely
// including all negative values and zero
int nextInt()

Be sure to make the necessary changes in your program.

Note 2: Please, download the new version of tester. It has been posted on
February 5th at 12:30 pm.

3

