
Intermediate Java Language c©2009 Felleisen, Proulx, et. al.

Intermediate Java Language

Our goal is to motivate each addition to the language with a compelling
example that shows why a new language feature has been included in the
language, what benefits it provides for the programmer, and what are the
pitfalls of using the new feature.

Some concepts may be expressed easily in one programming language,
but may require a lot more work in another language. We want to highlight
such situations, so that you understand what one may expect in a language,
and how to get around the language shortcommings.

While all of what we have said above seems to revolve around language
features, our focus is on the fundamental concepts in program design, mak-
ing sure that your thinking about program design transcends the language
and focuses on understanding the connection between information, its rep-
resentation as data, and the program that manipulates the data.

Beginner ProfessorJ

The Beginner ProfessorJ language is specified by the following data defini-
tions. The ellipsis (...) means that there can be zero or more data items of
the given kind. You can think about it as a list of zero or more items.

Program = Import ... Def ...

Import = import Name ;
import Name.* ;

Def = class Id { Member Member ... }
class Id implements Id { Member Member ... }
interface Id { Signature ... }

Signature = Type Id (Type Id , ...);

Member = Field ;
Constructor ;
Method ;

Field = Type Id = Expression ;
Type Id ;

Constructor = Id (Type Id ,...) { Init ... }

1

c©2009 Felleisen, Proulx, et. al. Intermediate Java Language

Method = Type Id (Type Id ,...) { Statement }

Init = this.Id = Id ;

Statement = if (Expression) { Statement } else { Statement } ;
return Expression ;

Expression = - Expression
! Expression
this
Expression.Id
Expression.Id (Expression ,...)
new Id (Expression ,...)
check Expression expect Expression
check Expression expect Expression within Expression
(Expression ,...)
Id
Number
ICharacter
String
true
false

Name = Id. ...
Id

Op = one of: + - * / < <= == > >= && ||

Type = Id
int
char
double
float
long
byte
short

Id is a sequence of letters, digits, , and $ and it must start with either a letter or with

String = ” any sequence of characters, including none ”

2

Intermediate Java Language c©2009 Felleisen, Proulx, et. al.

Additions to the Beginner ProfessorJ Language

We have added the following to the Beginner ProfessorJ language:

• Visibility modifiers public and private can be used with construc-
tors, and method definitions.

• We allow overloading of constructors and methods. This means that
in one class we can define several constructors as long as their argu-
ment lists are different (differing in the types of arguments, not the
argument names). Similarly, we can define in one class several meth-
ods with the same name as long as the argument lists are different.

• A class can extend a super class.

• A class can implement more than one interface, though we have
not seen an example of this yet.

• A class can be declared abstract. We expect that abstract class
will contain at least one abstract method.

• We allow abstract method declarations in abstract classes. Such
method declarations have only purpose statements and headers, just
like method declarations in interfaces.

• We modify the definition of Statement as follows:

Statement = if (Expression) { Statement } else { Statement } ;
if (Expression) Statement else Statement ;
return Expression ;

It means, when the statements that follow if or else are short and
simple, you do not need to enclose them in braces. However, every
if statement must be followed by an else clause.

• The Expression can no longer have the format

Expression = check Expression expect Expression
check Expression expect Expression within Expression

Instead, you can use any of the check... methods in the tester li-
brary.

3

