
Lab 9 c©2008 Felleisen, Proulx, et. al.

9 Understanding Libraries

9.1 Reading JavaDocs

The documentation for Java projects can be quite extensive. Reading just
the comments in the code is difficult. Furthermore, when a library is dis-
tributed in the compiled compressed from of an archive (.jar file) you can
no longer read the source code to find out what classes and methods the
library provides.

To make it possible to generate readable and searchable documentation
for Java programs the programmers write the source code comments for-
matted in a special way the Javadoc style. Java then provides a program that
reads the documentation and generates nicely formatted web pages that
contain all well-formatted comments provided by the programmer.

On the main web page find the link to the documentation for the tester
package. You see right away that it consists of three interfaces, six regular
classes and two Exception classes. There is a comment next to each of these.
On the left is a list of all classes, interfaces, and exceptions and each name
is a link to the detailed description of that particular item.

Follow the link to the interface ISame. The code for this interface has
been written as follows:

package tester;

/**
* An interface to represent a method that compares

* two objects for user-defined equality.

*
* @author Viera K. Proulx

* @since 30 May 2007

*/
public interface ISame<T>{

/**
* Is this object the same as that?

* @param that object

* @return true is the two objects are the same

* (by our definition)

*/
public boolean same(T that);

}

1

c©2008 Felleisen, Proulx, et. al. Lab 9

We will implement or use this interface later on. Now look at the class
IllegalUseOfTraversalException. It shows you that programmers can define a
new class of exceptions, specific to the situations that may be encountered
in their programs. The content of a class that extends java.lang.RuntimeException
is quite standard and there is not much to see there.

We will now look at where this exception is needed. Follow the link to
the interface Traversal. Did you notice that the names of interfaces on the left
hand side bar are written in italics?

Here is the code for the interface Traversal:

package tester;

/**
* An interface that defines a functional iterator

* for traversing datasets

*
* @author Viera K. Proulx

* @since 30 May 2007

*/
public interface Traversal<T> {

/**
* Produce true if this

* <CODE>{@link Traversal Traversal}</CODE>

* represents an empty dataset

*
* @return true if the dataset is empty

*/
public boolean isEmpty();

/**
* <P>Produce the first element in the dataset represented

* by this <CODE>{@link Traversal Traversal}</CODE> </P>

* <P>Throws <code>IllegalUseOfTraversalException</code>

* if the dataset is empty.</P>

*
* @return the first element if available -- otherwise

* throws <code>IllegalUseOfTraversalException</code>

*/
public T getFirst();

/**
* <P>Produce a <CODE>{@link Traversal Traversal}</CODE>

2

Lab 9 c©2008 Felleisen, Proulx, et. al.

* for the rest of the dataset </P>

* <P>Throws <code>IllegalUseOfTraversalException</code>

* if the dataset is empty.</P>

*
* @return the <CODE>{@link Traversal Traversal}</CODE>

* for the rest of this dataset if available - otherwise

* throws <code>IllegalUseOfTraversalException</code>

*/
public Traversal<T> getRest();

}

Next week you can use this as a guide for writing your own JavaDoc
documentation.

9.2 Implementing Traversals

Create a new project in Eclipse called Lab9. Add to it an interface we used
before, the ISelect interface. Add also the tester library.

In the past we have designed classes that represent recursively con-
structed lists of arbitrary items. However, every time we wanted to add
some functionality to these classes, we had to modify all three classes. This
works well when we are the sole users of our program. If we want to dis-
tribute our program as a library, we need to equip the classes with methods
that will allow the users that come later on to manipulate the data con-
tained in this list.

The Traversal interface has been designed to supply the methods we
may need for any program that needs to look in some orderly manner at
the data contained in a list.

We would like to - again - implement our filter method. We will need
again the ISelect interface:

// Our usual Selector interface
interface ISelect<T>{
boolean select(T t);

}

We can now design the classes that represent lists of data:

//Generic List Union
interface AList<T> extends Traversal<T>{
// Note that isEmpty(), getFirst() and getRest()
// are also added (abstractly) to this class by the

3

c©2008 Felleisen, Proulx, et. al. Lab 9

// ’implementation’ of Traversal
}

//Represents an Empty List of T
class MtList<T> implements AList<T>{
// Basic Constructor
public MtList(){}

// Traversal functions so that things like ’filter’ can be
// written without disturbing the list classes
public boolean isEmpty(){ return true; }

public T getFirst(){
throw new IllegalUseOfTraversalException(
"No first element in an empty list"); }

public Traversal<T> getRest(){
throw new IllegalUseOfTraversalException(
"No remaining elements in an empty list"); }

public String toString(){ return "Mt()"; }
}

//Represents a Non-empty List of T
class ConsList<T> implements AList<T>{
T first;
AList<T> rest;

// Basic Constructor
public ConsList(T first, AList<T> rest){

this.first = first;
this.rest = rest;

}

// Traversal functions so that things like ’filter’
// can also be written without disturbing the list classes
public boolean isEmpty(){ return false; }

public T getFirst(){ return this.first; }

public Traversal<T> getRest(){ return this.rest; }

public String toString(){

4

Lab 9 c©2008 Felleisen, Proulx, et. al.

return "Cons("+ first + ", " + rest + ")"; }
}

//First attempt at a generic filter algorithm
class Algorithms1{
// Filter the Traversal based on the given Selector
public <T> AList<T> filter(Traversal<T> tr,

ISelect<T> pick){

if(tr.isEmpty())
return new MtList<T>();

else
if(pick.select(tr.getFirst()))
return new ConsList<T>(tr.getFirst(),

filter(tr.getRest(), pick));
else
return filter(tr.getRest(), pick);

}
}

Add these classes and interfaces to your project. Make examples of lists
of Strings and design a couple of test cases for these methods. You do not
have to complete all tests, but make sure you understand what is going on
and how the method in the Algorithms1 class can be used.

9.3 Designing Datasets

Throughout the rest of the lab you should implement the classes and inter-
faces given here, make examples of data for each, and run the programs to
see the behavior. We suggest that you use a simple class of data, such as a
CartPt or a Book for which you can implement the ISame interface, as well
as some other interfaces.

One thing to notice about the filter function above is that it can only pro-
duce a List. We can change/fix this by creating a new interface for DataSets
where new items can be added to our existing data.

// Interface for a collection of data which can be added to
// and later traversed
interface DataSet<T>{
DataSet<T> add(T t);
Traversal<T> getTraversal();

}

5

c©2008 Felleisen, Proulx, et. al. Lab 9

The reason we need the getTraversal() method is because once we have
a DataSet, we don’t want to just keep adding things to it, so we can get a
Traversal and do some interesting stuff.

Now we have to create some DataSets, and a few methods which can
use them. What we can do is wrap existing data structures so the interface
can be implemented without changing the earlier code:

// Wraps an immutable List as a DataSet
class ListWrapper<T> implements DataSet<T>{

AList<T> list;

// Clients can only create an empty ListWrapper
public ListWrapper(){ this(new MtList<T>()); }

// Private constructor gets passed a List
private ListWrapper(AList<T> list){ this.list = list; }

// DataSet Function... add an element to the internal list
public ListWrapper<T> add(T t){

return new ListWrapper<T>(new ConsList<T>(t, list));
}

// Return the List as a Traversal
public Traversal<T> getTraversal(){ return list; }

}

9.4 Binary Search Trees

Well, here is where we win. Think about the binary search trees. There, too,
we add data items, get the first item, remove the first item and get the rest,
etc. So, we are doing the same operations as we have been doing with the
lists. We should be able to implement the same interfaces as before.

However, before we go on, we need one more interface in order to build
a Binary Search Tree (BST) - a method that allows us to decide the ordering
of the data items in the BST. Here is a possibility:

// Interface for less than comparison...
// ... a little bit like ISame
interface LessThan<T>{
boolean lessThan(T t);

}

6

Lab 9 c©2008 Felleisen, Proulx, et. al.

Of course, any class whose data we want to store in the BST structure
must then implement the LessThan interface.

Here is what the original implementation of a BST may have looked
like:

//The straight forward BST interface
interface BST<T extends LessThan<T>>{
// Insert the given T into this BST
BST<T> insert(T t);

// Return the Smallest
T smallest();

// Chop off the smallest
BST<T> withoutSmallest();

// Is this BST a Leaf
boolean isLeaf();

}

// Represents a non-empty BST
class Node<T extends LessThan<T>> implements BST<T>{
T data;
BST<T> left, right;

// Simple Constructor
public Node(T d, BST<T> lft, BST<T> rght){
this.data = d;
this.left = lft;
this.right = rght;

}

// The usual Insert method...
// Note: we can have repeated data,
// it will just go to the right
public BST<T> insert(T t){
if(t.lessThan(data))

return new Node<T>(data, left.insert(t), right);
else

return new Node<T>(data, left, right.insert(t));
}

// Return the smallest element == farthest Left
public T smallest(){

7

c©2008 Felleisen, Proulx, et. al. Lab 9

if(left.isLeaf())
return data;

else
return left.smallest();

}

// Remove the smallest element
public BST<T> withoutSmallest(){

if(left.isLeaf())
return right;

else
return new Node<T>(data,

left.withoutSmallest(), right);
}

// Definitely not a Leaf!
public boolean isLeaf(){ return false; }

}

//Represents the empty BST
class Leaf<T extends LessThan<T>> implements BST<T>{
// The Default Constructor is just fine

// Insert a T into this Leaf
public BST<T> insert(T t){

return new Node<T>(t, this, this); }

// No smallest, so we say Error
public T smallest(){

throw new IllegalUseOfTraversalException(
"No smallest element in an empty BST"); }

// No without smallest, so we say Error
public BST<T> withoutSmallest(){

throw new IllegalUseOfTraversalException(
"No more elements in an empty BST"); }

// It’s a Leaf!
public boolean isLeaf(){ return true; }

}

Well, this does not help much, as all the method names are different,
and we do not have the full functionality of the original DataSet. So now

8

Lab 9 c©2008 Felleisen, Proulx, et. al.

how can we use it in some more general algorithms? Well, as you may have
guessed... we wrap it!

Here is the code:

// Wraps a BST so we can use it
// as a DataSet and/or a Traversal
class BSTWrapper<T extends LessThan<T>>

implements DataSet<T>, Traversal<T>{
BST<T> bst;

// Public Default Constructor, starts empty
public BSTWrapper(){ this(new Leaf<T>()); }

// Public, Wraps a given BST
public BSTWrapper(BST<T> b){ bst = b; }

// Add a given T to this BST, and Wrap the result
public BSTWrapper<T> add(T t){
return new BSTWrapper<T>(bst.insert(t));

}

// Return ’this’ as a Traversal
public Traversal<T> getTraversal(){ return this; }

// Translation of the BST functions
// to our Traversal interface
public boolean isEmpty(){ return bst.isLeaf(); }
public T getFirst(){ return bst.smallest(); }

// Here we need to wrap the result again
public Traversal<T> getRest(){
return new BSTWrapper<T>(bst.withoutSmallest());

}
}

So, now we can implement a filter without using any constructors:

//Use our new DataSets to build a completely general
// filter function
class Alg2{
// Filter the Traversal into the DataSet
<T> DataSet<T> filterAcc(Traversal<T> tr,

ISelect<T> pick,
DataSet<T> acc){

9

c©2008 Felleisen, Proulx, et. al. Lab 9

if(tr.isEmpty()) return acc;
else
return filterAcc(tr.getRest(), pick,

updateAcc(pick, tr.getFirst(), acc));
}

// Update the accumulator if the given T is to be selected
<T> DataSet<T> updateAcc(ISelect<T> pick,

T that,
DataSet<T> acc){

if(pick.select(that))
return acc.add(that);

else
return acc;

}
}

9.5 Javadocs

If you have some time left, convert all documentation for the classes you
designed into the Javadoc style and generate the web pages of documen-
tation. In the Project menu select Generate Javadoc and then select which
files should be used to generate the documentation. See where you have
warnings and fix the problems.

10

